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solution is the speed and reliability of its numerical implementation, making
feasible parametric studies and iterative calculations.

Flowfield static pressure measurements were obtained for four nozzle
configurations including an axisymmetric, Laval nozzle and three annular ones.
Half-section cylindrical models were constructed and mounted con a splitter
plate whose surface corresponds to a plane of symmetry for the axisymmetric
geometries under consideration. Readings from a grid of pressure taps arranged
on the splitter plate allowed the determination of the static pressure fields
in the nozzle throats. For all four cases tested, it was found that the
agreement between the theoretical and experimental results is quite good
through a significant region of the throat.
the throat inlet region was there a noticeable discrepancy for some of the
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equations of inner and outer nozzle wall contours in the
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|
dimensionless velocity ratio defined in Eq. (III-75)
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specific heat ratio
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1. INTRODUCTION

There are a number of practical applications for which annular, super-
sonic nozzles are used. Among these are turbofan bypass nozzles, as well
as unconventional propulsion nozzles such as the spike, plug, and expansion-
deflection designs. The purpose of the latter group of nozzles, which all
contain centerbodies, is to obtain improved thrust performance over the
conventional converging-diverging configuration at otfr-design operating
conditions. Another application of annular supersonic nozzles which has
recently been proposed []}‘, is the use of coaxial, coflowing supersonic
streams in order to obtain jet noise suppression. The advantage of this
configuration is that the compléx, interacting two-stream flowfield allows
the suppression of noise~generation mechanisms with a minimal thrust
penalty, as opposed to the insertion of mechanical devices into the exhaust
flow.

However, the primary motivation for this work is the supersonic-
supersonic ejector, Fig. I.1, whereby an energetic, coflowing, supersonic,
primary stream is used to pump a low pressure, supersonic, secondary stream.
This device has applications, for example, in establishing and maintaining
supersonic flow conditions in the cavity region of chemical lasers {2,3] or
as a means of augmenting the pressure recovery for supersonic wind tunnel
applications (4-71.

From previous experience with the subsonic-supersonic ejector (8,9], for

which the secondary stream is subsonic, it is known that the overall ejector

"Numbers in brackets refer to entries in REFERENCES.
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operating characteristics are controlled to a great extent by the interaction
of the primary and secondary streams immediately downstream from their
point of confluence. Thus, any detailed investigation of the supersonic-
supersonic ejector flowfield should naturally concentrate on this "initial
interaction region." For example, . in the preliminary investigation of
Guile, et al. [10], a two-dimensional, inviscid, rotational method of
characteristics technique was used to analyze the flow in this region start-
ing at the ejector inlet station. However, in this adverse pressure gradient
situation, it is recognized that the boundary layer and viscous shear layer
flows near the primary-secondary confluence should be investigated. The
experiments of Mikkelsen, et al. [2] showed severe pressure recovery losses
for the constant area supersonic-supersonic ejector due to separation of the
secondary stream as the static pressure of the primary was increased above
that of the secondary at their confluence point. It is also known that in
the hot-flow, chemical laser application the boundary layers of the secondary,
iaser flow are extremely thick at the ejector station. Therefore, any
detailed calculations of the primary-secondary flowfield interactions should
include these viscous effects and preferably shculd be initiated upstream of
the ejector inlet so that the characteristics of the boundary layers along
the walls of the primary and secondary streams can be well established
before the confluence point is reached.

One natural place to start these calculations, particularly for the
primary stream, is in the throat region of the supply nozzles using an
appropriate transonic throat analysis. Since the Reynolds number of the

primary stream is generally quite large and since the streamwise wall
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pressure gradient in the throat region is favorable, the inviscid assumption
may be made in the development of the throat analyses. The results can then
be used as initial conditions to start the coupled inviscid/boundary layer
computations which proceed downstream through the remainder of the ejector
flowfield.

For both the chemical 1aser and wind tunnel applications of the
supersonic-supersonic ejector, the geometry at the ejector may be either
two-dimensional plane or axisymmetric. Hence, transonic analyses for
nozzles with plane, axisymmetric-no centerbody, or annular configurations
may be required to initialize the ejector flowfield calculations. In
particular, if the ejector sketched in Fig. 1.1 is taken as axisymmetric,
the primary supply nozzle is an annular one with a small relative distance
from the axis of symmetry to the nozzle when non-dimensionalized with
respect to the throat height. However, if the primary stream is somehow
centrally submerged in the supersonic secondary, for example by a strut sup-
port arrangement, its supply nozzle is a conventional axisymmetric one.
Plane configurations for the supersonic-supersonic ejector have also been
proposed and studied [10].

The objective of this study is twofold. First it is desired to develop
an analytical technique which provides an accurate description of the
transonic throat flowfield for a wide variety of two-dimensional nozzle
configurations including those mentioned previously. Although the analysis
is to be applicabie to as wide a region as possible in the nozzle throat,
its main intent is to establish an initial value line for starting the

marching-type computations, e.g., method of characteristics, for the




supersonic portion of the flowfield. Also, since the implementation of such
transonic analyses is invariably numerical, it is desired that the solution
be numerically fast and reliable so that parametric studies or iterative
calculations, as might occur in nozzle design situations, can be made in an
efficient and Tow-cost manner. The second objective is to provide further
insight into the characteristics of transonic throat flows by an experi-
mental investigation of a number of configurations including conventional
axisymmetric and annular ones. Comparison of the theoretical and experi-
mental results then allows conclusions to be drawn regarding the limits of
applicability of the analysis and suggests possible refinements of it.

As will be discussed further in the next chapter, no analytical tech-
niques are known to exist which contain all of the desired features just
outlined. In addition, experimental information concerning transonic
throat flows is extremely sparse, particularly for axisymmetric geometries.
This investigation is intended to provide additional information in these

areas.
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II. LITERATURE REVIEW

The subject of transonic flow in nozzles and ducts has been studied
for well over a hundred years, dating from the converging nozzle studies of
Navier {11] in 1829 and St. Venant and Wantzel [12] in 1839. During this
period, many techniques have been developed for investigating nozzle thrcat
flows as the state of understanding of this topic has been advanced. The
large majority of the contributions in this area are theoretical in nature
and apply to the conventional two-dimensional plane and axisymmetric con-
figurations, since study of annular nozzles has been motivated by the
relatively recent development of devices such as the plug and expansion-
deflection nozzles, the supersonic-supersonic ejector, etc. Because the
annular configuration is of prime importance in this investigation, the
purpose of the present chapter is to review those papers dealing explicitly
with this configuration and to summarize the major contributions to the
general methods which have been developed for throat flow analysis. The
survey of Hall and Sutton [13] provides a useful review of early work while
the more recent surveys of Flack and Thompson [14] and Brown and Hamilton

{15] consider newer developments in this area.

A. ANALYTICAL

One of the fundamental difficulties involved with the theoretical solu-
tion of most fluid flow problems is the basic nonlinear nature of the govern-
ing equations. Further complicating the analysis of steady transonic flows
is the fact that in the subsonic portions of the flowfield the equations are

of elliptic type while in the supersonic portions they are of hyperbolic




type. The mixed, nonlinear nature of the equations describing transonic
nozzle throat fiows makes the solution of these problems by both analytical
and numerical techniques difficult at best. However, several methods of
varying degrees of accuracy and usability have been developed. Those to

be reviewed in this section have been divided into the following categories:
indirect techniques, series expansion methods, time dependent numerical

techniques, and other methods.

1. Indirect Techniques

In the indirect or inverse methods, the velocity distribution is
assumed along a reference streamline, such as the nozzle centerline, the
flowfield is calculated by some, usually approximate, technique, and then
in the inviscid approximation, any other streamline can be taken as a
nozzle wall. Therefore, indirect techniques can be applied only to the
nozzle design problem and cannot, without iteration, be applied to the
direct problem of calculating the flowfield in a nozzle with given wall
contours.

Among the earliest attempts at analyzing the flow in the throat of a
plane converging-diverging nozzle was that of Meyer [16]. He assumed that
the velocity along the axis increased linearly and substituted a double
power series expansion in the coordinates into the perturbation potential
equation. The coefficients up to and including the sixth order terms were
obtained from which the characteristics of the flowfield were deduced.

Another early solution technique which was applied to nozzle flow

analyses is the hodograph method developed successively by Lighthill [17,18],




Frankl (19}, and Cherry ([20-22]. In this method the hodograph equations,
which employ the velocity components as independent variables, are used.
These equations are linear, but the solution is complicated by the fact
that over a portion of the supersonic flowfield the mapping from the hodo-
graph plane to the physical plane is not one-to-one. Cherry [20]) was able
to devise a transformation which provides a single-valued solution over the
entire plane and later [21,22) showed how superposition could be used to
obtain solutions for realistic nozzle flows. Major drawbacks of the hodo-
graph method are that it is applicable only to the planar case and that
practical calculations appear to be quite complicated.

An early publication dealing with annular nozzles is that of Lord
[23] who considered a supersonic nozzle with a cylindrical centerbody. In
his inverse technique, two orders of solution were obtained by assuming that
the velocity along the cylinder surface increases linearly in the streamwise
direction for the first order solution and quadratically for the second
order. As noted by Lord, the solutions for the annular case are much more
complicated than for the limiting cases of axisymmetric and plane nozzles
for which the centerbody diameter approaches zero and the throat diameter,
respectively. Lord used his throat flowfield results to obtain a starting
line for method of characteristics nozzle design computations.

One of the more well known indirect techniques was developed by Hopkins
and Hill [24] who used the Friedrichs formulation to obtain the flowfields
in axisymmetric nozzles with a small wall radius of curvature at the throat.
The dependent variables were expanded as power series in the stream function

so that the flowfield could be found from the prescribed velocity
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distribution along the axis by solving for the series coefficients. A corre-
lation was developed between a one-dimensional "reference boundary" and the
computed boundary to facilitate the solution of the direct problem of
analyzing nozzles with specified wall contours. The authors found that the
most significant geometric parameter affecting the flow in the throat is the
wall radius of curvature at the throat and that the inlet angle of the con-
vergent section is not important unless this radius of curvature is less
than the throat radius. In a later publication (25}, Hopkins and Hill
extended their method, with corrections by Morden and Farquhar ([26], to the
case of unconventional, annular nozzles inclined at arbitrary angles to the
axis of symmetry. Their method assumes, however, the existence of a
straight reference streamline along which the velocity is specified; this

is not necessarily the case in the direct problem. Also, because of the
asymmetry of the streamlines about the reference streamline, no correlations
were obtained between reference and computed boundaries., For analysis of
given nozzles, iterations on a computer are suggested.

Norton [27] developed a somewhat different inverse technique for con-
ventional axisymmetric nozzles. In his method, the Euler equations, includ-
ing the effects of rotationaiity and swirl, are first transformed by intro-
ducing the stream function and a stretched axial coordinate; these
transformed equations are then numerically integrated outward from the given
velocity distribution along the axis. Norton presents some calculated
results, which required approximately two minutes of Univac 1108 time, but
emphasizes that the method is not suited to the problem of analyzing given

nozzle contours.
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In a novel application of the indirect metnhod, Van Tuy! [28] has
obtained solutions for both axisymmetric and planar nozzles. The stream
function and density are expanded as Taylor series in the neighborhood of a
point on the nozzle axis along which the velocity distribution is specified.
The coefficients of these series are found by substitution into the govern-
ing irrotationality and Bernoulli egquations, and series for other quantities
of interest are also determined. Padé fractions are then used to obtain
convergence when the resulting power series diverge and to accelerate con-
vergence when they converge. Van Tuyl carried out sample calculations for
a specific axisymmetric nozzle using a digital computer both to obtain the

terms of the series and to form the Padé approximants. The computatians

took 21 seconds on a CDC 6400 when 25 terms in the power series were retained.

An inverse scheme for analyzing the flow in conventional plane and axi-
symmetric nozzles has been reported by Klopfer and Hoit [29]. In their
formulation, the von Mises transformation is applied to the continuity and
Euler equations so that the dependent variables are taken as the pressure,
the transverse coordinate, and the ratio of the transverse to streamwise
velocity components. The resulting equations are numerically integrated
using the prescribed pressure distribution along the nozzle axis. Results
for both plane inverse and axisymmetric direct problems are presented, and
good agreement is obtained with the data of Cuffel, et. al. {30] in the
axisymmetric case. The direct problem is solved iteratively as a sequence
of inverse problems.

Ishii [31] has recently proposed an inverse method for nozzle design.

In this technique, the governing equations for inviscid flow are transformed
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S0 as to use the streamline and orthogonal trajectories as independent vari-
ables. The flowfield is divided into streamtubes and integration of the
equations is carried out numerically starting from the prescribed velocity
distribution along the nozzle axis.

As should be clear from the preceding discussion, the major disadvan-
tage of the indirect methods is their inability to deal with the problem of
analyzing the flow in a nozzle of a given configuration. Only Hopkins and
Hill [24] have devised a scheme for avoiding the iterations which are inevi-
table when applying an inverseé technique to the direct problem. As discussed
by Brown and Hamiltor [15] and Klopfer and Holt [29], another objection to
these methods is the potentially poorly posed nature of the problem resulting
from the specification of the velocity along the centerline in the subsonic
region. When the governing equations are solved numerically, this specifi-
cation is known to have a destabilizing effect on the computations (Hadamard

instability).

2. Series Expansion Methods

The series expansion techniques have proven to be very popular for
obtaining the flowfields in the throats of supersonic nozzles. In these
methods, the dependent variables are expanded in series, and the unknown
constants and functions are then determined by substitution into the govern-
ing equations and boundary conditions. These techniques can generally be
considered to provide approximate solutions for the problem of analyzing the
flow in a nozzle of a given configuration.

One of the first attempts at solving the direct problem of flow in a

planar nozzle was made by Taylor {32} in 1930. He expanded the compressible
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perturbation potential in a double power series in the coordinates and sub-
stituted it into the corresponding potential equation. By using the
boundary condition that the nozzle wall is a streamline in the inviscid
sense, the coefficients in the series were obtained. Taylor calculated an
example for a nozzle with circular walls and a dimensionless radius of
curvaturet, Rc, of 4. .

Somewnat later, Sauer [33] presented series solutions for the flow in
both axisymmetric and planar supersonic nozzles. In this well known tech-
nique, the compressible potential equation was first simplified by retaining
only the dominant terms, and the perturbation potential function was then
expanded as a power series in the transverse coordinate, y, with unknown
coefficient functions of the streamwise coordinate, x. By substituting the
expansion into the simplified potential equation and relating the resulting
flowfield to the curvature of the nozzle walls, the unknown functions and
constants were gbtained. However, since the series was terminated after the
first two terms, the results are applicable only to nozzles with small wall

curvature, i.e., large Rc.

At about the same time, a somewhat different solution technique for the
conventional configurations was proposed by Oswatitsch and Rothstein [34].
Ratner than obtaining solutions for nozzles whose centerline velocity dis-
tribution is approximated to be linear as in Sauer's method, any centerline

distribution is, in principle, possible in Oswatitsch and Rothstein's method.

'Throughout this investigation, the dimensionless radius of curvature, R ,
is defined as the throat wall radius of curvature divided by the throat’
half-height. For conventional axisymmetric nozzles the half-height is
taken as the throat radius, while for annular nozzles it is taken as the
distance between the inner and outer throat wall locations in the
meridional plane.




however, since it is determined by the iterative solution of a differential
equation which results from the continuity equation for a given nozzle con-
tour, this technigue is much more difficult to use than Sauer's closed form
solutions. In addition, Oswatitsch and Rothstein's method gives anomalous
results for nozzles which have a small wall radius of curvature.

Hall [35] also carried out an expansion solution for the flow in the
throat of axisymmetric and plane nozzles. In this investigation, a careful
order ot magnitude analysis of the various dependent and independent vari-
ables was made, and the transonic perturbation velocity components were
expanded in appropriate series using . = Rc'1 as the expansion parameter.
By substituting these series into the wall bounaary conditions and the
governing irrotationality and gas dynamic equations, the formulations for
the various orders of solution in the expansion technique were obtained.
Closed form expressions for the first three orders were determined by using
solution forms suggested by the boundary conditions. The first order solu-
tions are identical to those of Sauer [33], and Hall also found that to the
first three orders the approximate solutions for nozzles with circular,
parabolic, and hyperbolic arc wall contours coincide. Nozzles for which
the wall radius of curvature is less than the throat half-height, Rc<1,
cannot be analyzed with this technique since this results in expansion
parameters greater than unity. In fact the smallest value of R, used by
Hall in his example calculations is 10/3.

This same solution technique was later extended by Moore and Hall [36]
to the case of annular nozzles inclined arbitrarily to the axis of symmetry.

However, as pointed out by Thompson and Flack [37], the coordinate system
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employed in this study is an overspecified, inconsistent one. In a cou-
panion report, Moore {38] used - = Rc_”2 as the expansion parameter to
construct approximate solutions for the flow in asymmetric planar nozzles.
The first three terms of the series solution were presented along with the
results for two special cases, namely the configurations in which the two
nozzle walls have unequal curvature and in which the nozzle wall contour
is asymuetric about the throat plane.

In a series of articles [39-42], Szaniawski has investigated transonic
flow in nozzle throats. In [39] and (40], the governing equations are
derived and the existence and nature of solutions for the flow of a viscous,
heat conducting gas in the throat region of two-dimensional plane nozzles
are investigated. The two later papers [41,42] are concerned with finding
solutions under the usual assumptions of inviscid, irrotational flow. A
solution is developed for a particular class of planar nozzle wall contours
in [41). The potential function is expanded as a power series in the trans-
verse coordinate with undetermined coefficient functions of the streamwise
coordinate. Recurrence relations for these functions are then determined
by substitution into the potential equation and the boundary conditions. A
similar method is used in [42] to determine solutions for both plane and
axisymmetric conventional nozzles, but an auxiliary system of curvilinear
coordinates is employed. Both solution techniques are applicable only to
nozzles which have a large throat radius of curvature.

In a somewhat different but closely related area, Sichel [43,44] has
studied the flow in two-dimensional nozzle throats at operating conditions

near the choking point. The transition from symmetric Taylor flow to

RIS
- L e v ————— i —— P




continuously accelerating Meyer flow was investigated by including the
effect of longitudinal viscosity in the governing equations. Based on this
formulation, a similarity solution was found which provides & smooth tran-
sition between the regimes and which shows the initial stages of shock
formation.

Kliegel and Quan [45] used a method similar to Hall's for predicting
plane and axisymmetric nozzle flows except that a different stretched axial
coordinate was employed. The Qelocity components were expanded as series

. -1
in . =R
c

, and two orders of corrections to the one-dimensional solution
were obtained. The authors conclude that the resulting solution, which is
claimed to be valid throughout the entire nozzle, should be limited to
nozzles which have a large wall radius of curvature, R >2, and that Hall's
transonic solution can be obtained from it through a coordinate transforma-
tion and reardering of the terms. The cases of unchoked nozzle fiows and
multistream nozzle expansions, as would occur in film cooled rocket engines,
are also discussed.

The expansion solutions presented so far are all limited to nozzles
with gentle wall curvatures. In an attempt to analyze the case of small
wall radius of curvature for axisymmetric nozzles, Kliegel and Levine ([46]
presented a solution utilizing € = (Rc+1)'1 as the expansion parameter.
Since this parameter is Tess than unity for all values of the radius of
curvature, the resulting series should have superior convergence properties
in the Timit of small R . The authors contend that this solution is the
one obtained when the solution in toroidal coordinates, which are convenient

for circular arc wall contours, are transformed back to cylindrical




coordinates. However, in a later publication Levine and lcats [47] conciude
that this contention is false and also that "the prrnased series do not
satisfy the differential equations of motion in cylindrical cocrdinates.
In reality, the “solution" proposed in [46] 1s simply ball's solytion in

= RC'l transformed to a series in . = (RCH)'l such that the two are
equivalent in the limit of large radius of curvature, R -+. liegel and
Levine also corrected some errors which appeared in Hall's third order
solution for axisymmetric nozzles, although the present author has found
their correction of the discharge coefficient to be in error.

The conclusions of Levine and Coats (47] just mentioned were the
result of an extensive investigation of axisymmetric nozzle throat flows.
The transonic equations of motion, including the effect of variable
specific heat ratio, were solved in toroidal coordinates using a combina-
tion of a small parameter expansion and a double series in the coordinates.
Although a number of expansion parameters was tried, none of the resulting
solutions was found to be convergent for small values of R . The authors
hypothesized that this is because the expansion solutions assume that the
local wall geometry, in particular the throat radius of curvature, completely
deterimines the flowfield in the throat and that this premise breaks down as
Rc+0. In addition, the effect of variable specific heat ratio was found to
be negligible in the transonic region.

Taulbee and Boraas (48] have developed a Hall-type series solution for
transonic flow in the throat region of axisymmetric nozzles with a nonuni-
form stagnation temperature distribution at the inlet. The governing con-

tinuity and Euler equations were first transformed using the stream function




as an independent variable, and expansions for the dependent variables were

then assumed using an order of magnitude analysis. Two orders of solutions
were obtained, and the results indicate that the sonic line location is
essentially unaffected by the nonuniformity of the stagnation temperature.
However, as demonstrated by the calculated example presented in [49], the
flowfield details such as the flow angle .- sensitive to the total temper-
ature distripution. In a later paper, Boraas [50] included the effects of
nonuniform total temperature and composition in an analysis of transonic
throat flow in axisymmetric nozzles. First and second order solutions were
again found (see Ishii [51] for corrected equations), and it is stated that
in this case the sonic line location does depend on the nonuniformities of
the properties upstream of the throat although no examples are presented.
In both of the rotational analyses just cited the expansion parameter is
taken as ¢ = Rc'1 so that the solutions are not applicable to nozzles with
small radius of curvature of the throat wall.

Apparently unaware of the earlier work of Lord (23], Smithey and Naber
(52] presented a solution for the sonic line in an axisymmetric nozzle with
a concentric inner cylinder. The solution was obtained by hypothesizing a
trial form suggested by the Sauer [33] solutions for the limiting cases of
axisymmetric and plane nozzles. Substitution into the transonic gas
dynamic equation and use of the boundary conditions then allowed determina-
tion of the unknown functions and constants. However, since the resulting
solution satisfies the irrotationality condition only for the limiting con-
figurations, its applicability to the annular case of interest is

questionable.




Thompson and Flack [14,37,53] have performed a very extensive investi-
gation of the flow in the throat region of asymmetric plane and annular
axisymmetric supersonic nozzles. In their theoretical éna?ysis, the method
of Hall was used with an expansion parameter which reduces to - = (R +')-l
where ﬁ; is an average dimensionless radius of curvature for the two walls
and . may be taken as zero or one. Three solution orders were obtained,
and the authors noted that significant improvement in the convergence
properties of the solution for small radii of curvature resulted from using
r. = 1. However, because of the manner in which the axisymmetric term in
the gas dynamic equation was expanded, the annular solutions can be applied
only to configurations for which the distance from the axis of symmetry to
the nozzle throat is large when non-dimensionalized with respect to the
throat half-height, i.e., annular nozzles which approach the plane confiqur-
ation. Their solution cannot be used for conventional axisymmetric nozzles,
and, in addition, it appears that it gives planar results for annular
nozzles which are not inclined with respect to the axis of symmetry.
Experiments utilizing both static wall pressure and laser doppler veloci-
meter measurements were performed for a series of plane nozzle throat con-
figurations; good agreement was found between the analytically and experi-
mentaily determined sonic lines. These experiments will be discussed in
more detail in a later section.

Recently, Ishii has published the results of analytical investigations
of the flow in axisymmetric nozzle throats with rotationality effects
included. In (54] throat flowfields with rate processes and nonuniform

property distributions are considered; see also the comment by Boraas [55]




and the rebuttal by Ishii {51]. The expansion method of Hall was used with
the parameter taken as ¢ = Rc'l, and one term of the series is presented
for frozen and equilibrium, uniform flows. The transonic flow of a vibra-
tionally relaxing or chemically reacting gas in a converging-diverging
nozzle is investigated in [56]. Again the Hall method was employed, but in
this study the expansion parameter was chosen as ¢ = (Rc+])'l.

The main disadvantage of the series expansion techniques is that they
can generally be applied only to a given class of configurations. In
particular, most of the analyses mentioned above have been developed only
for the conventional two-dimensional plane and axisymmetric configurations.
Also, for all of these analyses, there is a lower limit on the throat wall
radius of curvature below which the analyses give unreasonable results. On
the other hand, since the series methods generally lead to closed form

expressions, the implementation of these solutions is quite straightforward.

3. Time Dependent Numerical Techniques

In order to avoid the mixed nature of the governing equations for
steady transonic flow, the time dependent methods utilize the unsteady form
of the eguations which are hyperbolic for all speed regimes. The resulting
initial value problem is solved numerically by continuing the computations
in the time domain from an arbitrarily assumed set of initial conditions
until the steady state is asymptotically approached.

Saunders [57] apparently was the first to apply this technique to
internal transonic flows. In this study the two-step Lax-Wendroff differenc-

ing scheme was employed to integrate the equations for flow in axisymmetric




nozzles with uniform inlet conditions assumed. Good agreement was found
between the numerical results and the wall static pressure data of Back,
et al. [58] for a converging-diverging nozzle. The computation time was
reported as approximately 45 minutes on a CDC 3200 computer.

Migdal. Klein, and Moretti [59] utilized a nonconservative form of the
basic equations together with a stretching of the axial coordinate to
obtain tne throat flowfield in axisymmetric Laval nozzles. An example
calculation was performed for a configuration with a dimensionless throat
wall radius of curvature of 0.625 and inlet and exit angles of 45° and 15°,
respectively. The agreement between these results and the wall pressure
data of Back, et al. [58] is excellent. The running time for this case
was less than five minutes on an IBM 360/75.

By using the two-step Law-Wendroff scheme developed by Saunders ({57},
Wehofer and Moger [60) investigated the effect of nonuniform inlet condi-
tions on axisymmetric convergent-divergent nozzle flows. These authors
also considered the case of an axisymmetric converging nozzle with a coni-
cal inlet section including the influence of the operating pressure ratio
and the associated free jet structure. The computations were very time
consuming, however, taking from two to five hours, depending on the mesh
size, on an IBM 360/50.

Brunell [61] used a somewhat different technique to study the transonic
flowfields in planar, supersonic nozzles. In his method, a modified upwind
differencing scheme was utilized to integrate a conservative form of the
governing equations. The results appear to be reasonable for operating con-

ditions in which the nozzle is not choked, but problems were encountered
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for the choked conditions which are of primary interest. In the latter
case, the constant Mach number lines contain slope discontinuities which
Brunell hypothesizes are due to numerical pressure disturbances that are
propagated from the supersonic wall region into the subsonic region.
Experiments were also conducted using an annular nozzle with a cylindrica)
centerbody and small throat gap, but in all cases only unchoked operating
conditions were studied.

In order to predict the flowfields, and especially the discharge
coefficients, for axisymmetric and plane nozzles with small throat radius
of curvature, Laval [62,63] used a time dependent method similar to that of
Saunders (57]. In this treatment, however, an axial coordinate stretching
was employed together with the introduction of a pseudo-viscosity term to
avoid stability problems. Calculations were carried out for nozzles with
radius of curvature values down to 0.1, and very good agreement between
computed and measured values of the flow coefficient was noted. Laval
states that the method can be applied to annular configurations, although
no such examples are presented in the references cited above. The calcula-
tions required approximately two haurs of IBM 360/50 time.

Serra [64] has also developed a transient technique for the determina-
tion of nozzle flows. In his method, the one-step Law-Wendroff difference
scheme is incorporated with a numerical damping term so as to stabilize the
numerical procedure in the vicinity of shock waves. Also, since mathemati-
cal overspecification of the entrance flow conditions caused accuracy diffi-
culties in earlier numerical studies, the problem was formulated to establish

realistic conditions at the entrance. The computed results compare well
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with experimental data and previous theories for axisymmetric and planar
nozzles. An example is also included of the flow in an annular turbofan
passage. The computation time on a Univac 1108 computer was 80 minutes
for an axisymmetric nozzle problem.

In an effort to reduce the long computation times associated with time-
dependent methods, Cline {65-68] has developed an efficient program for
calculating a wide variety of compressible, internal flows. The second-
order accurate, MacCormack finite difference method is utilized to solve the
governing equations which are left in a nonconservative form. A second-
order, reference plane characteristic scheme is used for the boundary
points, and an explicit artificial viscosity is included for shock calcula-
tions. The most recent version [68] of the code solves the Navier-Stokes
rather than the Euler equations so that viscous flows with Reynolids numbers
up to about 10" can be analyzed. Several examples are presented including
inviscid converging, converging-diverging, and annular nozzle flows as well
as a viscous converging-diverging nozzle calculation. Good agreement
between the computations and experimental data is obtained with computation
times ranging from 29 seconds on a CDC 6600 to 7 minutes on a CDC 7600 for
the example problems. These times are obtained, however, at the expense of
using coarse mesh spacing, particularly in the inviscid cases.

The major advantage of the time-dependent numerical techniques is that
if the codes are developed in a sufficiently general manner they may be
employed in the analysis of a variety of transonic internal flows. A
serious drawback to their use, however, is the long computation times

required. This means that parametric studies or iterative calculations, such
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as might be necessitated in a design procedure, would be numerically time

consuming and expensive.

4. Other Methods

A number of other methods have also been used for nozzle flow analysis.

One such technique is the method of integral relations developed originally
by Dorodnitsyn [69]. In the application of this method, the flowfield is
divided into streamwise strips across which the governing partial dif-
ferential equations are integrated using assumed profiles for the dependent
variables. The resulting ordinary differential equations are then solved
to obtain the coefficients. Holt [70] formulated the one strip and two
strip approximations for both the inverse and direct problems of flow in
planar nozzles. Results of a one strip, inverse calculation are presented
and are found to agree well with the hodograph results of Cherry [21] in the
supersonic region but to diverge seriously from them in the subsonic region.
Liddle and Archer [71] carried out one and two strip computations for the
analysis of the flowfield in axisymmetric nozzles of arbitrary shape with
particular emphasis on conical nozzles. The two strip solutions gave good
agreement with experimental wall and centerline pressure measurements for
nozzles with R >2. Liddle (72] later extended the method to include the
cases of annular and asymmetric, plane nozzles. One strip calculations

were performed and were found to be in reasonable agreement with wall pres-
sure measurements for an annular configuration and with the numerical
method of Katsanis (73] for incompressible flow in a planar nozzle. One of

the fundamental difficulties involved with using the method of integral
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relations is that to achieve reasonable accuracy for nozzles which have a
small throat radius of curvature a large number of strips is required with
attendant long computing times and program complexity. Saddle point
singularities which arise in the integration of the equations must also be
carefully handled.

Numerical techniques other than the time dependent ones discussed
previously have also been utilized for throat flowfield analyses. In an
early investigation, Emmons ([74] developed a method which used a conformal
transformation and a relaxation process designed for hand calculations to
solve the governing equations. In a later publication {[75], an example
was calculated for the flow in a two-dimensional nozzle with a hyperbolic
wall contour. Interestingly, when this method was programmed on a digital
computer convergence problems were encountered {15]. Twenty-five years
later Prozan and Kooker [76} investigated axisymmetric nozzle flowfields
using an error minimization technique. A sophisticated steepest descent
procedure was employed to minimize the residuals in the steady flow con-
servation equations. The results of this method agree quite well with the
flowfield measurements of Cuffel, et al. [30] for a nozzle with small
throat radius of curvature. Typical run times ranged from 5 to 10 minutes
on an IBM 7094. Recently, Brown, et al. [77) used a type-dependent
relaxation technique to study both conventional and annular axisymmetric
nozzle flows including the effects of rotationality. In this method,
which is quite popular for external transonic flows, the axial derivatives
are approximated by centered differences in the subsonic (elliptic) portion

of the flowfield and by backward differences in the supersonic (hyperbolic)
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region. The results of example caiculations for hyperbolic, conically con-
vergent, and annular nozzles indicate that the rotational effects of
entrance flow nonuniformities can be significant in evaluating nozzle
performance. The example problems required from 3% to 5 minutes and a
region size of approximately 170K on an IBM 370/158 computer. Using a
somewhat different numerical scheme, Fanning and Mueller [78] have studied
planar nozzle flowfields. The problem was first recast as a Laplace equa-
tion with an inhomogeneous term that encompasses the compressibility effects.
A successive approximation method was then utilized to converge to a final
solution. Flowfield and discharge coefficient results agree well with
experimental measurements, but the computing times are extremely long, taking

from 45 minutes to 6 hours of IBM 370/155 time.

B. EXPERIMENTAL

Not only are theoretical analyses of transonic nozzle flows quite
complicated, but experimental measurement of them is also difficult. This is
because disturbances introduced by measurement probes are propagated along
characteristics and are reflected from the duct walls back into the region
of interest. Thus, most experimental studies have been limited to wall
static pressure measurements, although some investigators have attempted to
use pitot probes. Recently, non-intrusive optical techniques have also been
employed.

The most thorough flowfield experiments have been performed for the
two-dimensional planar geometry, primari]ylbecause sidewall static taps can
be used to obtain both transverse and streamwise pressure distributions.

Jacobs [79] utilized this method to determine isobars in six asymmetric plane
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nozzles. Later, Flack and Thompson [14,53,80) conducted an extensive series
of experiments on a set of 13 two-dimensional nozzles with a number of wall
curvature combinations. For each configuration the sonic line location was
determined using sidewall static pressure readings and also laser doppler
velocimeter (LDV) measurements. It was found that the two data sets and the
results of the series solution developed in [37] agreed with each other
reasonably well with the LDV measurements being slightly upstream of the

static pressure measurements and the theoretical results being still further

upstream. These investigators observed that small changes in the boundary
geometry caused very large changes in the sonic line location.

Experiments for axisymmetric Laval nozzles have been limited mainly to
wall static pressure readings since the nozzle geometry does not provide
any means for making flowfield static pressure or LDV measurements. One of
% the first experimental investigations of transonic nozzle flow was performed
by Stanton (81]. The flowfield in an axisymmetric nozzle with R, = 4.77
was studied by determining static pressure distributions along the contour
for a number of supply pressures. Pitot pressure distributions were also
measured along the axis and along an axial line near the nozzle wall, but
the probe certainly disturbed these measurements, particularly those made

near the wall. At the Jet Propulsion Laboratory a number of experimental
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investigations [30,58,82-84] of axisymmetric nozzle flows has been made by

i Back and his co-workers. Static wall pressure and discharge coefficient

| measurements for nozzles with a dimensionless throat radius of curvature as
small as 0.25 were used to study the effects of contraction section shape,

inlet flow direction, wall friction, entrance boundary layer thickness, and
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wall cooling. Only for a nozzle with a radius of curvature of RC = 0.625
and conical inlet and exit angles of 45° and 150, respectively, were flow-
field measurements made [30}. These were obtained by means of a 0.889 mm
diameter tube which was supported and held taut between an upstream plenum
chamber and a downstream vacuum chamber. The tube had a 0.152 mm diameter
hole drilled radially in it, and the pressure distributicons along the axis
and along five radial locations were found by appropriate axial traverses.
At the off-axis positions disturbances were undoubtedly introduced into the
flowfield and the velocity vector was inclined to the tube. However, to
date this is the only known set of data which considers the flow patterns
in the transonic region of an axisymmetric nozzle. Liddle and Archer [71]
measured the centerline and wall pressures Tor four axisymmetric nozzles
with radius of curvature values ranging from 0.625 to 4.0. The centeriine
distributions, however, are reported for only two of the nozzles. In
another series of experiments, Masure, et al. [63] measured the discharge
coefficients for five nozzles with conical inlet and exit sections and R,
values from 0.25 to 0.8 .

Data for annular configurations is extremely sparse. Bresnahan and
Johns [85] measured static pressures along the inner wall of a turbojet plug
nozzle. In their experiments the outer wall was straight and parallel to
the axis of symmetry and the inner wall had a large radius of curvature,

Rc = 7.8 . However, there were only three pressure taps in the transonic
region for which the corresponding Mach number was less than 1.5, since the
supersonic region was of primary interest in this study. As mentioned pre-

viously, Brunell [61] conducted experiments on an annular nozzle with a

,'A.Y" —— e = - inanadateing - e A




Q‘L‘ﬂ'"“’" TS . ~ e ——————

cylindeical centerbody, but only operating conditions for which the nozzle
was unchoked were considered. Liddle {7Z] has also obtained wall pressure
measurements for an annular, supersonic npzzle. However, the geometry of
the experimertal setup is not specified in (72}, and, in any event, the data
are very close to the results of one-dimensional theory.

Obviously, there is a need to expand the data base for flow in the
transonic region of nozzles, particularly in termc of fiowfield measurements
for both conventional and annular axisymmetric configurations. As mentioned
in the preceding chapter, this is one of the objectives of the present

investigation.
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II1. THEORETICAL ANALYSIS

The objectives outlined in the introductory chapter for the theoretical
investigation are to provide a numerically fast, reliable, and accurate
method for describing the throat flowfields in annular, supersonic nozzles.
In addition, it is desired that the method be direct and that it be appli-
cable to a wide variety of configurations. Of the few previous analyses
which have considered the annular geometry, none are felt to have all of the
desired characteristics. Two [23,25] utilize indirect methods; others
(36,37,52,72] may be applied only to specialized configurations, and the
rest [62,64,68,77] are generally numerically stow and expensive. Only the
recent numerical techniques of Cline [68] and Brown, et al. [77] have
obtained results with a modest expenditure of computing time. However, both
of these methods implicitly assume that the main flow direction in the
throat is essentially parallel to the axis of symmetry.

Based on these considerations, the method which has been chosen is a
series expansion technigyue similar to that used by Moore and Hall [36] and
Thompson and Flack [37] but more general in terms of the geometries which

can be analyzed.

A. FORMULATION

A sketch of the configuration under consideration is shown in Fig. III.1.
The R-Z coordinate system is the standard cylindrical system while the x-y
coordinate system is rotated such that the y-axis lies along the cross section
of minimum area in the throat with the x-axis perpendicular to the y-axis and

the origin located on the axis of symmetry. For this general case, the main
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flow x-direction is inclined to the axis of symmetry at an angle -, positive
in the counterclockwise direction, and d is the throat half-height in the
R-Z coordinates. It should be noted that for an inclined, annular nozzle
the minimum area cross section does not correspond to the cross section of
minimum distance between the contours. The influence of the radial coordi-
nate, R, in computing the annular area results in the minimum area section
being nearer the axis of symmetry than the minimum distance section.

[t is assumed that the problem to be analyzed is the steady, inviscid,
irrotational, adiabatic flow of a perfect gas in an annular nozzle operat-
ing in the choked, continuously accelerating, Meyer regime. These are the
usual assumptions and operating conditions of interest. The inviscid
assumption, in particular, is justified since the Reynolds number based on
the throat height is large for most practical applications and the stream-
wise pressure gradient is favorable. Therefore, the boundary layers in the
throat region are very thin and viscous effects may be safely neglected.

Under these assumptions, the governing equations may be taken as the
irrotationality condition and the "gas dynamic equation" [86],

U, -V, =0 (111-1)

(uz—az]uz + (vz-az]vR + 20V, - é%! = 0 (111-2)

a = speed of sound ,
where the gas dynamic equation is obtained from the continuity equation,
Euler's momentum equation, and the definition of the speed of sound. In
these equations, subscripts are used to denote partial differentiation with

respect to Z and R. These two governing equations can be combined to form

e o
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the well-known compressible potential equation, but since the solution is to
be found in terms of the velocity components, the potential function is not

introduced into this analysis. Transforming from the R-Z cylindrical coordi-
nates to the x-y system with lengths non-dimensionalized with respect to the

throat half-height, d, and velocities with respect to the critical speed of

sound, a*,
X = LZ%%:l cosB + % sinB (111-3)
y = - L;i%:l sing + % coSE (111-4)
u = %;—cosa + %; sing (I11-5)
v = o- g;-sinB + %;-coss , (I111-6)

and using the following adiabatic relation for a perfect gas with constant

specific heats,

2
R A aE e

the governing equations take the form

uy -V, = 0 (111-8)
2 -1 2 4 2 -1 2
[1-u - %;T-v ]ux - ;;T—uvuy + (1—v - %IT u ]vy
-1 2 -1 2 .
[ LT Ael BV J(v cosR + u sinB)
+ [ NAd had =0 . (I111-9)

y cosB + x sing
The final step in the transformation of the equations is the introduction of
the transonic perturbation velocity components by

u=1+4 (I111-10)
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vV =V, (I1I-11)
where U and v are assumed to be small compared to unity, |Gy, 1V;<<1. This

results in

oyt
COSR + x sing

.
ng— P L %i% i - 1:—-92}'V cosi + (1+0)sin 3]
+ -
y

(IT1-13)
The boundary conditions in this inviscid analysis are that the bounding
walls must be streamlines. Using y = g(x) and y = h(x) as the functional
forms of the equations for the inner and outer wall contours, respectively,

the boundary conditions can be stated as

V(x,g(x))
V(x,h(x))

[1+i(x,9(x))]g' (x) (I11-14)
[+ (x,h(x))]h* (x) , (I11-15)

where primed quantities represent differentiation with respect to x,

() = g;-. Expanding the eguations for the boundaries in Maclaurin series

about the throat,

2 3

y=9(x) =y +g'(0)x +g"(0) 5+ +g"(0) Fr+ ... (111-16)
X2 X:5

y = h(x) =y, +h'(0)x + h"(0) 57+ h" (0) 3+ + ... , (I11-17)

the boundary conditions can be rewritten as

. 2

¥(x,9(x)) = [1+i(x,9(x))] [9'(0)+9"(0)X+g"' (0) 5r + ] (111-18)
2

V(x,h(x)) = [14i(x,h(x))] [h'(0)+h“(0)x+h"' (0) v + } . (111-19)

—— T e - .
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The solution technique involves expanding the perturbation velocity
components in appropriate series and substituting them into the governing
equations ana boundary conditions. However, before this can be done an
expansion parameter, ¢, must be chosen and various order of magnitude esti-
mates made. Both Kliegel and Levine [46] and Thompson and Flack [37] found
that improved convergence properties of their series solutions were attained
for nozzles with a small wall radius of curvature by using . = (RCH)'l

rather than the Hall [35] parameter ¢ = Rc-l. Based on their experience,

the expansion parameter which has been used in this investigation is

= (ﬁcm)" , (I11-20)

where ﬁ; is an average dimensionless radius of curvature for the two bounding

walls and n is arbitrary. For n > 1, ¢ is therefore less than unity regard-
less of how small ﬁ; may be. Defining ﬁ; in terms of the second derivatives

of the equations for the wall contours,

= 2 .

RC - h||(0) _ gn(o) [} (III 2])
£ becomes

e = —h(0) - g"(0 . (111-22)

2 + n[h"(0) - ¢g"(0
This is identical to the parameter used in [37] except that n may have any
value here and is not restricted to the values zero or one.
From one-dimensional considerations, it is well known [13] that the

acceleration at the throat of a supersonic nozzle is given by

e ]
o = L(;:Tﬂ{: . (I11-23)

Q
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where w = 0 for plane two-dimensional nozzles

"

1 for axisymmetric nozzles

Us . ng ta. (III-10), the definition of transonic perturbation velocity com-
ponent U, and Eq. (II11-20), t.c definition of the expansion parameter e,
Eq. (III-23) yields the following order of magnitude estimate for the

transonic throat region,
u = ofe7?) (111-24)

Also from the dominant terms in boundary conditions (IIl-18) and (I1I-19), it

is known that

<!
]

=g"(0) + g" (0)x + ... (111-25)

= h"(0) + K™ (0)x + ... . (I111-26)

<?
i
1]

It is shown in Appendix A that the terms ¢g"(0) and h"(0) domina:e the right
hand sides of the two preceding equations for nozzles with circular arc wall
contours. Combining this information with the definition of ¢ in Eq. (I1I1-22)
allows the estimate

v o= o0l(e) (111-27)

for the transonic region.

Requiring that both terms in the irrotationality condition (I11I-12) be
of the same order of magnitude and using this last estimate for Vx results
in the conclusion that Gy must also be 0(e) in the throat. Since all lengths
have been non-dimensionalized with respect to the throat half-height, d, Ay
is 0(1) across the throat and therefore Ui must be 0(e) in the transonic region
of interest. Utilizing the estimates expressed in Egs. (111-24) and (111-27),

it is concluded that /i = 0e'/2) or ¥ = o[¢*/2). Taking this estimation for

o g
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the magnitude of ¥V together with Eq. (II1-27), or alternately the irrotation-

' ality governing equation (III-12), results in the requirement that x be of
‘{al/z for consistency. Thus, the solution developed here is restricted to
the narrow transonic region about the throat plane, x = 0.
To complete the order of magnitude analysis the gas dynamic equation

(I1I-13) must be investigated. Dividing the numerator and denominator of

the last term of this equation by cosg, it may be restated as,

- - tle - A (e, o [-2_ LR I R L A
Y y Y+] v+ Jy

cosB # 0 . (111-28)
Disregarding their numerical coefficients, the dominant factors in each of
the first three terms are Gﬁx, Vﬁy, and Vy which are 0(53/2], 0[55/2], and
_(Cs/z}’ respectively. Likewise, the dominant factors in the last term are,

vV + tanpR
y + x tangd

Assuming for the moment that tang is at most 0(1), i.e., disallowing con-

|
L
i figurations with radial or nearly radial main flow directions for which
L tang - w‘, this term can further be reduced to

|

v + tang
y ]

since x has been restricted to the throat region, x = 0[51/2]. Since

y = (1) or larger, depending on the dimensionless distance from the axis of

"This restriction is consistent with the previous one that cos8 # 0 in
Eq. (111-28).

;{h
¢
4
§
1
|
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symmetry to the annular nozzle throat, and using the previous estimate for

the magnitude of v, it is known that,

% - (277 (111-29)

or smaller. Therefore, in order that the dominant terms in Eq. (II1-28) all

be of the same order, it is required that

ti?B } O[Es/z] (I111-30)

or smaller. This means that for annular nozzles with throats that are near
the axis of symmetry in a dimensionless sense, y = 0(1), only small angles
of inclination, B, may be considered. However, this would seem to be the
only physically realistic case anyway, since one would not expect to
encounter an annular configuration for which the throat is very close to
the symmetry axis while the main flow x-direction is highly inclined to it.
For nozzles whose throats are large distances from the axis, y >> 1, the
restriction to small angles of inclination may be relaxed as long as the
estimate of Eq. (III-30) is satisfied. In the limit as y - <, the last term
in the governing gas dynamic equation (III-28) vanishes as it takes the
correct planar form.

The expansion parameter, e, as defined in Eq. (III-22), is related to
the average wall curvature of the bounding walls at the throat and enters
the formulation through the second derivative terms in the Maclaurin series
expansions for the boundary conditions, Eqs. (III-18) and (III-19). However,
because of the complication that the definition of ¢ involves both g¢"(0) and
h"(0) while each boundary condition contains only one or the other, a method

must be devised such that when expansions are assumed for the dependent

S

e
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variables, appropriate series occur in the expression of the boundary condi-

tions. This iS done in the following manner. Solving Eq. (I11-20) for Rc_l,

= =1 _ £
R v (111-31)

-1

and using the identity g“(0) = g“(O)ﬁéﬁ; along with Eq. (III-21) for ﬁc

and Eq. (II1-31) for ﬁ;'l yields

" _ 2g"(0 _ 2 "(0) N 2 ! .
0" ©) = 5 ey T = Oy gy (et (13

for |ne| < 1.

Similariy,

(0) = gy Doy T~ W gy (e ), (e

for |nef < 1.

The requirement that |ne| < 1 in the expansions above is always met since
h"(0) - ¢"(0) > 0 for an area minimum at the throat and only non-negative
values of n are considered (see Eq. (III-22)). 1In this way power series in
€ are obtained in the boundary condition evaluations, although it is clear
that the second derivatives are exactly matched only for n = 0. The coeffi-
cients multiplying the parentheses in Eas. (III-32) and (III-33) are 0(1},
and as shown in Appendix A, the first few derivatives in the Maclaurin
series expansions for circular arc wall contours are of the following orders
of magnitude,

g'(0), h'(0) = of*2)  g"(0), n"(0) = ofe)

g (0), v (0) = 0[] ¢" (), t" (0) = ol¢*) (111-34)
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estimates obtained thus far, various

are defined as shown below,

(1) independent variables

- --1/2
Z - xiil o X =
.2 y =y
- -1/2
8, - 115;1 T3 % tang
Led
ranti/2 SRRV
9, = [l%l; %4 (0) h = ?l%jj e %he(0) (I11-35)
- 29" (0 h, = 2h’(0)
% = RT0) - g"(0 2 = A"(0) - ¢"(0
B +] '1/2 - . 1-1/2 -
. [ 4 .

Note particularly the transformation from coordinate x to the 2(1), stretched
coordinate z. It is also seen that the estimates y = 0(1) and tanB = O(E 3/2]
have been used in the definitions of y and B, > although as previously dis-
cussed, nozzles with larger inclinations may be analyzed if the requirement
expressed in Eq. (III-30) is satisfied.

With these definitions and order of magnitude estimates the next step is
to expand the perturbation velocity components in appropriate series.

Assuming expansions in half-powers of € starting with U = 0(e) and

V= 0(53/2}, it has been found that the following series are sufficient,
u(z,y) = ul(z,y)c + uz(z,y)s2 + us(z,y)e3 + ... (111-36)
+1 L/2 2 3
v(z,y) = [15— é] [vl(z,y)e +v,(z,y)e" + v (z,y)e + ...} , (I11-37)
j.e., terms involving odd half-powers of ¢ in the U expansion and even half-
powers of ¢ in the vV expansion vanish.

T and
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Substituting definitions (III-35) and expansions (I11-36) and (I111-37)
into the governing irrotationality equation (I11I1-12) and gas dynamic equa-
tion (I11-28) and gathering coefficients of like powers of . results in the

following two sets of equations,

aun avn
3y T =0 (n =1,2,3, ) (111-38)
and
au1 avl Bl + vy
- 2Ul 5z +W+_—.Y_—=O {n=1) (111-39)
aun au1 8vn v
-2U172——2Una—2+—8y—+72fn{ul,vl,...,Un_x,Vn_l} (n=2,3, ...),

(111-40)
where the functions, fn, on the right hand side of Eq. (III-40) are always

known from the lower order solutions. The first two are given by

ou ou oV u v
.2 1 _ 1 _ 171 B, u -
f, = u 57t 2v, 757—+ (v 1)ul ¥Ta + (y-1) + (v-2) ; 1 (I11-41)
and
au ) 8u2 au 1 8u1 u 3ul
f, = 2u, Az Tu 5t 2u u, 57 ( > ] Vi 57 2v, IV 2u v, v
au av oV v u v
2 1 y-1 12
oy S (el e Gy e [ W e e
2 2 2
u v v B, u B . u B,z
Sy 2yl I YL IR RN RS e S b /o I Bt
1) 2 (G 2 2 22 e 3 e e Y 2
B, v z
+[1_;‘] 1" (111-42)
yz

In the last term of gas dynamic equation (II1I-28), the binomial expansion of

the factor (y+x tang)™' has been used which assumes that |x tang/y| < 1.

.
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This requirement is certainly met if the one stated in Eg. (III-30) is. Of
interest is the fact that the irrotationality condition retains its simple,
linear form through all orders and that the only nonlinear equation among
the set of gas dynamic governing equations is the first order one. This
behavior is typical of expansion solution techniques.

The boundary conditions which apply to each solution order must also be
obtained in an appropriate form. Only the details for the boundary condi-
tion at the inner wall will be given since the procedure for the outer wall
boundary condition is identical. Transforming from coordinate x to coordi-

nate z, Eq. (III-14) for the inner wall condition becomes,

V(z,9(2)) = [1 + Ulz,9(2))] P & (111-43)

where the Maclaurin series expansion for the inner contour, £q. (III-16), is
+1] 1 2 +
y=9(z) =y, + 1 (glz * 7 9,2 ]Ez * I?l,(%.gznzz}£3

+ l‘é‘l (‘? gznzzz}g‘ o, (111-44)

when the definitions and expansions in Egs. (III-32), (III-33), and (111-35)

are introduced. The derivative dg/dz needed in Eq. (III-43) is,

d +] 2 +] +1 2_1] 4
ag = lf_ (gl+gzz]g + lf_ [gznz]e3 + lﬁ_ (gzn Z]E + ... . (I11-45)

Expansion of the perturbation velocity components at the inner wall in Taylor

series about y = y yields,
2
i 25 g(z)-y,
U Y P i
stnote)) = afe ) <3| (stey) ¢ 22 !
’ y=y, 3y ey
: (111-46)
and
'JL1U"‘”“ﬁ*—-"‘JJ;?*m»— — - e e
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;v_y;y:r | [ : 2
1 Y-y

V(z,g(z)) = vizoy )+
(I11-47)
The procedure then is to substitute these expansions into boundary condition
(IT11-43) using the series for U and Vv, Eqs. (I11-36) and (111-37), and the
wall contour information, Eqs. (III-44) and (III-45). Gathering and equat-
ing coefficients of powers of & leads to the following set of inner wall

boundary conditions,

vl[z,yi} =g, +9,2 (111-48)
vz[z,yi} = g,nz + [91+gzz]“1(z'yi} (111-49)
vs(z,yiJ B gznzz * gznzul(z’yi} * [gl+gzz]u2[z’yi]

(Y*+1 1 2 v,
W 912*29221‘37

(I11-50)

Y=y,
i

The boundary conditions along the outer contour are exactly analagous,

vl{z,yo} =h +hz (111-51)
vz[z,yo} = h,nz + (hl+hzz]ul[z,y0] (I11-52)
vs[z,yo] = hznzz + hznzul(z,y;] + [hl+hzz]u2[z,y°}

- [1_;.1] (hlz N % h222] %Vy—‘ vy, (111-53)

In performing these Taylor series expansions about the inner and outer throat
wall locations, it is clear that the boundary conditions are satisfied exactly

only at these points.
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The formulations for the various orders of solution in the expansion
technique are now complete. For the first order, n = 1, irrotationality
condition (III1-38), gas dynamic equation (III-39), and boundary conditions
{I11-48) and (111-51) comprise the formulation. Likewise, Eqs. (III-38),
(111-40), (I11-49), and (I1I1-52) are the ones of importance for the second
order, etc. . Once the solutions for the various orders in the expansion
technique have been obtained, the flowfields in the throat region of

annular, supersonic nozzles may be characterized.

B. SOLUTION

The solution technique is similar to that used originally by Hall [35]
and proceeds by first considering the formulation for the first order prob-
Tem and then moving to the second and higher order problems. As just men-

tioned, the governing equations and boundary conditions for the first order

are
au oV
1 1
D (111-38)
aul avl 81 v
- 2Ul —§7+'—a‘—y—+ y =0 (111-39)
and
vl(z,yi] =g *+g,z (111-48)
vl[z,y;} =h +hz. (111-51)

Inspection of boundary conditions (II1I1-48) and (III-51) suggests the

following solution form for Voo

vi(z,y) = Adly) + Al(y)z (111-54)
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1]
=

Ally = 9, A;:yo' (111-55)

Aly ' =g, Aty v o=, \111-56)

O,o" ]

and the prime is now used to denote differentiation with respect to y.
Substitution of the v, solution form into irrotationality eguation (III-38)
and integration with respect to y results in

u(z.y) = A(y) +8 +8z, (111-57)

where B, and Bl are constants and the form of the integrating function is
suggested by Eq. (I111-54) for v,. The assumption of terms involving higher
powers of z in either Eqs. (III1-54) or (I1I-57) is unnecessary since these
terms would vanish by boundary conditions (I11-48) and (III-51) anyway.

The unknown A functions and B constants must still be determined. This
is accomplished by first substituting the expressions for u and Vo into
the gas dynamic governing equation, (I1I1-39), and gathering coefficients of
similar powers of z. Since the resulting equation is to be satisfied for all
z, these coefficients must vanish which leads to the following two equations,

Al(y)
' AM(y) + - 28 (111-58)

o ) Ay ly) 8,
and z: Ar(y) ey 28 A (y) + 2B B, - v

(I11-59)

In this manner the problem has been reduced from the solution of the original
set of partial differential equations and boundary conditions to the solution
of the two preceding ordinary differential equations with conditions (I1I-55)
and (II1I1-56). Equation (III-58) can be integrated once to give

%

v’ (111-60)

, )
Al(y) - Bly +

R P ot e e e s am
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where the constants 82 and Bl are determined from the conditions in
kq. (I1I-55) as
i - I
|h2y. gzygjyiyo

B, = — (111-61)
Yooy,

and

. 1/2
B = A : (111-62)
1 'yo
The positive root is chosen in the expression for Bl since au/s5z, which is
identically B, for the first order solution, must be positive for an
accelerating nozzle flow. Investigation of the radicand reveals that it
also is always positive for the nozzle configurations considered here, h, > 0

and g, < 0. Integration of tq. (IT1-60) yields

2 2
A (y) = %-B]y + B, lny (I11-63)

where an integration constant is unnecessary since it can be considered as
being included with the still undetermined constant B, in Eq. (II1-57) for u .

Substituting this relation for A (y) into Eq. (III-59) and integrating
once yields

A'(y) =~ 8%° + 8B yiny + [BB - 188 + °s (111-64)
oY) T By 1P Y Y o5 "7 BBy -8ty B

The conditions listed in (III-56) may then be used to determine B, and B as,

B = -[hlyi-glyo-B4yi+Bsquyiyo
3

5 (I11-65)

and
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h 'y
B = o

o-B4yo-Bi

s (I11-66)

2
Bl yo

where B4 and B5 have been defined as,

1 .33 . 1 ,
84 Z Z’Blyo + BleyOLLyo - §-8182y° - E (I11-€7)
and
B =18 +BBy iy -+BBy - (111-68)
s - 4 °Y 1 BoY; 1Y, 2 515, ®

The first order sotution is complete. The B constants are evaiuated in

the following order: B , Eq. (111-61); B, Ea. (111-62); B,, Eq. (I11-67);

B, Ea. (I11-68); B, Eq.

. (IT11-65); and B,, Eq. (I1I-66). With these con-

stants determined, the functions Af(y), A (y), and A (y) are then known from
Eqs. (I111-60), (I11-63), and (111-64), and u and v, may be evaluated from
Eqs. (III-57) and (III-54), respectively.

The higher order solutions are obtained in a very similar manner start-
ing from the formulations developed in the preceding section. Solutions
through the first three orders have been found, and as might be guessed from
the form of the gas dynamic governing equations, Eqs. (III-39)-(111-42), the
effort required to obtain them increases dramatically as one moves to the

higher order problems. For the second order, v, and u, are of the form,

1]

Coly) + €l (¥)z + Cy(y)2° (111-69)

v, (z,y) = C;

il

u, (z,y) (111-70)

2
[Cl(y)+Do] + {écz(y)+01]z +0,2 ,
requiring the solution of three ordinary differential equations, while the
third order problem requires solving four ordinary differential equations

with v, and u, given by,

i m v
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2 . 3

v (2,y) = B (y) + Ef(y)z + Ej(y)2" + Ef(y)z (111-71)

- ~ -
3

iLEl(y)+Fog ¥ J(LZEz(y)i-Fl‘z ¢ 3E (y)+F, 20 ¢ 2L (111-72)

u, (2,y) ] | s

Lengthy algebraic manipulations are involved, but the form of the differential

equations to be solved is very similar to Egqs. (II11-58) and (II[-59). As in

the integration of the equations for the first order problem, a large

number of intermediate constants are defined and used, but because of space

limitations the details of the second and third order solutions will not be

presented here. However, a compliete solution summary is included in Appendix B.
With the expressions for the [ul,vl], [uz,vz], and [us,v3] perturbation

velocity components determined, other quantities of interest may also be

found. These include: the velocities components u and v in the x-y coordi-

nate system; M*, the ratio of the local speed to the critical speed of sound;

8, the angle of inclination of the velocity vector from the x-axis; the Mach

number, M; and the local static to stagnation pressure ratio, p/po. The

series expansions for these quantities in terms of the perturbation velocity

components are given below,

u(z,y) =T +0=1+ue+ uze2 + use3 + ... (111-73)
v(z,y) =V = [I%l-e}l/z[ble + v252 + vse3 + ...] (111-74)
M*(z,y) = [u2+v2]l/2 =1+ ue+ uzez + (“3 + 1%1 vf]e3 + ...
(I11-75)
8(z,y) = tan" (v/u) = [I%l 5]1/2[§15-+(v2-u1vl]ez
+ [vs-u‘vz—uzvlwfvl]e3 + ...} (I11-76)

e - ~r
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- ‘LM*Z —lx/z _
o ; - i B -
M(z,y) = B L S =1 + fhal u -+ ou o+ 37( 2
]-j:-]bl*zi p 2Tl .2 4 _
ot j -
] 2 3 (542-81+3. 303 ]
+|Lu3+ 4—vl+§(,-1)ulu2+' ) + ‘

/(¥-1) w/(Y-l)( -
P T WL _ 2] o 2
b (z,y) [] oy M J {Y*U 1 \,L—ul *u,
T (VS 21 RV LAl P (111-78)
k3 4 1 6 Ux [ ...J‘J .

The reason that these expansions should be employed is so that the only terms
included are those for which the coefficients of the various powers of ¢ are
completely known. For example, if u and v are first calculated from

Egs. (III-73)/and (I11-74) and then M* is determined from the definition

)12

M* = [u2+v2 , information from just one of the many sixth order terms,
vie®, will be included.

Another quantity of importance is the discharge or flow coefficient, CD,
defined as the ratio of the actual nozzle mass flow to that obtained from the
ideal one-dimensional approximation of uniform, sonic flow at the throat, i.e.

y

op  dA
C [ Fﬂ—} : (111-79)
P P A* x=0

yi
where in the present notation u has been non-dimensionalized with respect to
the critical speed of sound, a*. Substituting the series expansions for p/p*
and u and the expression for dA/A* into the integrand, the relation for Cj

becomes

¢ o= - beel oo, O e+ (111-80)
p ' T2 2 D1 CbzE p3 Tee
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after integration, where the constants CDI, Coz' and CD3 are evaluated as
shown in Appendix B. The reduction in mass flow due to the two-dimensional,
nonuniform nature of the flowfield is generally small and the value of the
discharge coefficient is therefore very close to unity for the configurations
which may be analyzed with the expansion solution developed here.

Thus, with the {u),vl}, {uz,vz}, and [us,vs] transonic perturbation
velocity components and the Cor e Coz’ and C, discharge coefficient constants

determined, all of the flow variables of interest, including those just pre-

sented, are known to the third order in the present series approximations.

C. SOLUTION CHECKS

Because the development of the solutions described in the preceding
section requires lengthy algebraic manipulations, particularly for the third
order solution, they must be thoroughly checked to ensure their validity.

To accomplish this task two groups of tests have been carried out as shown
in Table III.1.

The first set of tests involves reducing the solution obtained here for
the general annular configuration to previous solutions for simpler
geometries. The results for the conventional axisymmetric configuration are
found by passing to the limit y -~ 0 for a nozzle with a straight inner
boundary, i.e., as the inner wall approaches the axis of symmetry. The
Timiting value, ¥, =0, cannot be used in the numerical implementation of
the annular solution since this leads to division by zero. However, an
arbitrarily small value, e.qg., y, = 10"0, may be employed to approximate the

axisymmetric configuration. In a similar manner, the planar symmetric

— T ——r o o ot o 4




geometry may be investigated by considering the limit Y, since the
transverse curvature effect becomes negligible in that limit. In this sit-
uation there are two possible wall configurations of interest. Both the
case in which the bounding walls have equal and opposite curvatures and

that in which one of the walls is straight approach the symmetric plane
limit as Y, ot in the latter case, the straight wall may be considered as
the centerline of a symmetric nozzle. Using n = 0 in the expansion param-
eter definition, (Eq. I111-22), the results of the present solution reduce to
those of Hall [35], with corrections by Kiiegel and Levine [46], in both

the axisymmetric and plane symmetric limits. Likewise, for n = 2 the solu-
tion developed here is identical to previous, unpublishéd solutions [87] by
the present author for both the conventional axisymmetric and plane configur-
ations, where ¢ = (RC+1]" was employed as the expansion parameter. It
should be emphasized that neither of these ¢ = (RCH]'1 solutions for the
axisymmetric case coincide with that of Kliegel and Levine [46] because, as
pointed out in Chapter II, their result is not a solution since it doesn't
satisfy the equations of motion. Rather, it is simply a transformation from
the Hall series in ¢ = Rc'l to a series in e = (Rc+1]'l such that the two
are equivalent as Rc » =, Except for errors in the third order discharge
coefficient constants, the analysis of Thompson and Flack [37] for plane
nozzles can also be reduced to the ¢ = [Rc+1]°l solutions mentioned above
for the symmetric, planar case. Another configuration which provides a limit
check on the solution for the general annular nozzle is the specialized case
for which either the inner or outer boundary is straight and parallel to the
axis of symmetry. Results of the two term solutions developed in [87] using

€ = [Rcﬂ]'1 agree with those of the present solution for n = 2.
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It is to be noted that when one of the bounding walls is straight, e.qg.,

g"(0) = 0, the expression for ¢, Eq. (I1II-22), simplifies to

o huO
¢ = ?fTT%W%ET , (111-81)

which is equivalent to

¢ = [2Rc+n]“ , (111-82)

since h"(0) = Rc'l

if h'(0) = 0. Because of the presence of the factor 2 in
Eq. (III-82) it might be expected that for cases with one straight boundary,
different results would be obtained with the present analysis than with pre-
vious analyses which use either ¢ = Rc’l or ¢ = [RCH\J'1 as the expansion
parameter. However, if the formulation of the presznt investigation is care-
fully studied, it is found that n enters the problem only as the product ne
through the boundary conditions, Eqs. (III-32) and (III-33). As long as this
product is the same for two solutions, the results obtained with them will be
identical regardiess of the numerical coefficient of RC in the expansion
parameter. Therefore, no generality is lost by employing the definitions
given in Eqs. (III1-20)-(1I1-22) for €. This explains why all of then = 0
solutions produce identical results independent of the ¢ definition and also
why the n = 2 case in the present technique corresponds with the previous
€ = {RCH]'l analyses.

The reduction tests just discussed were generally carried out numerically

by comparing the discharge coefficient constants C Coz’ and CD and the

D1 °? 3

transonic perturbation velocity components [ul,vl], [uz,vz], and [us,vs]
obtained with the present solution to those obtained from earlier solutions

for the specialized configurations. As demonstrated by the expansions given
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in Egs. (I1I1-73)-(I11I-78) and (I11-80), these parameters completely specify
the quantities of interest. The perturbation velocity comparisons were
made by evaluating the components at a number of y locations on planes of
constant x through the throat region. Only for the 1imiting case of the
conventional axisymmetric nozzle is it convenient to simplifyv the general
solution analytically. Since this is a special case of great practical
importance, the resulting solution is summarized in Appendix C, where the
expansion parameter has been taken as ¢ = [Rc+ﬂ}'l. For n # 0 this is a new
and very useful result.

The second group of tests involves numerically back substituting the
solutions for the various orders .into the corresponding governing equations,
(I11-38)-(111-42), and boundary conditions, (III-48)-(III-53) and evaluating
the residuals. The partial derivatives in these equations are approximated
by using second order, central, finite differences for all z-derivatives and
for y-derivatives at interior points and either forward or backward, second
order differences for the y-derivatives at boundary points. This scheme pro-
vides a powerful means of checking the solution given its formulation and can
be used to verify it in this sense.

The satisfaction of the governing equations, (I11-38)-(III-42), as
measured by the size of the residuals, was tested at a number of y-locations
ranging from the inner to the outer boundary on planes of constant x through
the throat region. The boundary conditions were also checked at various x
stations through this region. In addition, the tests were carried out for a
large number of geometrical configurations and specific heat ratios for the

gas so that all of the significant parameters were varied. In all cases it




was found that the residuals for the equations and boundary conditions were
O{]O‘BJ or smaller when a grid spacing of /x = ly = 107" was used for the
differencing.

The results of the two sets of tests described above provide strong
evidence of the correctness of the solution developed in the preceding sec-
tion. It is felt, therefore, that the results of this analysis can be used

with confidence to predict the flowfields in the throat regions of annular,

supersonic nozzles.

D. PARAMETRIC STUDY OF SOLUTION BEHAVIOR

So far no mention has been made either of the convergence properties of
the series solution which has been developed or its range of applicability
to various geometrical configurations, etc. . The purpose of this section
is to present the results of a comprehensive, numerical study whose objec-
tive was to parametrically investigate these questions.

As mentioned in the first section of this chapter, the order of magni-
tude estimate, y = 0(1) or larger, was made, and the origin of the x-y
coordinate system was taken to lie on the axis of symmetry so that annular
configurations whose throats are near the axis can be analyzed. These
geometries are of prime importance for the supersonic-supersonic ejector
application, and use of this estimate also means that the solution may be
applied to conventional axisymmetric nozzles. However, for annular axi-
symmetric, or in the limiting case, planar configurations for which the

dimensionless distance from the symmetry axis to the throat region is large,

y >> 1, the evaluation of the transonic series solution involves sums and
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differences of very large terms since the constants and functions are pro-
portional to powers of Yo Yoo and y. This situation, of course, can lead
to roundoff errors in the numerical implementation; the appearance of these
errars depends on the precision of the machine being used. Therefore, the
first set of studies which was carried out simply determined the y-distance
from the axis of symmetry at which roundoff errors began to significantly
affect the solution when evaluated on the University of Il1linois CDC Cyber
175 digital computer. Both single precision (14 digit accuracy) and double
precision (29 digit accuracy) versions of the subroutine which performs all
of the constant and function evaluations for the series solution were
tested. As expected, it was found that the only significant parameter in
these tests was ¥, » the dimensionless distance from the axis of symmetry to
the inner nozzle wall. This quantity may be used to characterize the axis-
to-throat distance since Y, Y <Y, and y, -y, = 1 in the region of
interest. Other parameters such as 8, the angle between the throat axis
and the symmetry axis, n, the parameter in the expansion variable defini-
tion, Rci and Rco, the wall radii of curvature, etc., were found not to
affect tne appearance of roundoff errors.

The results for the upper limits on Y, for avoiding roundoff errors in
the determination of the various orders of perturbation velocity components,
[ul,vl], [uz,vz], and [us,vs], are shown in part (a) of Table 111.2. The
single precision 1imits were found by noting the Y, value at which the
single precision results for the velocity components in the throat plane
deviate significantly [O(O.]%X] from the double precision values, while the

double precision 1imits were found by observing the value of y, at which the

TP
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double precision values deviate significantly . (0.1:)] from those of the

J
planar limit which is asymptotically approached as y, o> I[f all three
orders in the series solution are employed, the Timit for single precision
is approximately y, = 15; this includes the axisymmetric-no centerbody case
and most annular geometries of interest. The double precision limit is

y, = 1000, which provides a very good approximation to the plane configura-
tion. If only two terms of the solution are used, the limits are y, = 60
and y, = 30,000, respectively, for single and double precision, etc. . The
reason that the limits are relaxed for the lower orders is that their solu-
tions involve lower powers of y than does the third order solution.

Since the derivation of the discharge coefficient, CD, requires the
integration of the density-u velocity component product across the throat
plane, the constants involved in its evaluation contain higher powers of Y,
and y_ than do the velocity components themselves. Thus, the upper limits
on y, for avoiding roundoff errors are more restrictive for CD as shown in
part (b) of Table I1I.2. The technique used to determine these limits was
similar to that previously discussed for the perturbation velocity com-
ponents except that in this case it was the flow coefficient constants, CDl,
Cp,» and C . tnat were monitored. For solutions involving all three orders,
the limit on y, is approximately 10 for single precision and 250 for double
precision. However, since the value of the discharge coefficient is so
close to 1.0 for all of the configurations for which the analysis applies,
i.e., for R_>0(1): .98 < C < 1.0, the discharge coefficient, with its
more stringent 1imits, is of less interest than the velocity components.

This is particularly true since one of the primary purposes of the nozzle
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throat analysis is to establish an accurate initial value line for analyzing
the supersonic portion of the flowfield using, e.g., the method of
characteristics.

At this point it should be mentioned that the numerical implementation
of the series solution is extremely fast on the Cyber 175. A typical prob-
lem requires Yess than a second of execution time when the single precision
version of the constant-evaluating subroutine is used and less than two
seconds when the double precision version is employed. For this reason the
doubte precision form is routinely used, and as can be deduced from the pre-
ceding discussion, it provides throat flowfield information for a wide
variety of configurations. Conventional axisymmetric, annular, and planar
geometries can all be analyzed as the distance from the axis to the inner
boundary is increased from zerc to the limiting value for avoiding roundoff
errors.

Once these limits on the axis-to-throat distance were established, a
second series of studies was performed to observe the behavior of the
transonic series solution over a wide range of parameters for nozzles with
circular arc contours. The parameters involved in the analysis are: v,
the specific heat ratio of the flowing gas; n, the parameter in the expansion

variable definition, Eq. (11I-22); the geometrical configuration of the

ngzzle including Y » Rci, R ,» and B; and the number of terms of the expansion

solution to be included, i.e., first, second, or third order solutions.
There are an infinite number of possible geometries and values of y and n as
well as the three possible solution orders which can be investigated.

Obviously, then, these must be limited in a significant and useful way in




t order to effectively study the solution behavior. First, it was found that
the solutions are not strongly dependent on y so that only the usual
diatomic value of 1.4 was used. Hence, it is assumed that the analysis
correctly predicts the weak parametric dependence upon this physical
property. Five values of n were employed, n = 0, 0.5, 1, 2, and 4, and
each of the three solution orders was considered. In addition, twelve total
configurations were analyzed with three values of the radius of curvature,
R, =0.625, 2, and 5, utilized in each of four groups of geometries. These
configurations are defined and shown in Fig. II1.2: (1) conventional axi-
symmetric; (2) annular axisymmetric with the outer boundary straight and
» parallel to the axis of symmetry, y, = 2; (3) annular with the inner radius
of curvature twice that of the outer and the x-axis inclined at roughly
| + 20° to the axis of symmetry, Y = 5.3; and (4) an approximately plane
symmetric configuration with‘% = 100. The value RC = 0.625 was chosen
since a dimensionless wall radius of curvature less than unity was desired
and this was the radius of curvature value for the axisymmetric nozzle
tested by Cuffel, et al. [30]. As mentioned in Chapter II, this is the only
experimental investigation to date in which flowfield measurements have been
obtained for an axisymmetric configuration.

With these 60 combinations of nozzle geometry and n, the following
studies were performed. For each case, the M = 0.8, 1.0, and 1.2 constant
Mach number contours were first found and plotted as one, two, and three
terms of the exparsion solution were included. These plots provide graphi-
cal information concerning the convergence properties of the solution over

the range of parameters investigated. The convergence was further studied
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. . L. 2 2 3 3
by printing the quantities UpSs Vime Uys s Vo, Uge and Ve at a number

of points along the loci of the third order iso-Mach curves and noting

whether the following inequalities were satisfied: u,- - u ,
iU3E} < ]u2§, etc. . In a similar manner, the discharge coefficient inequal-
ities, jCDzai < {CDII and jCDsz] < ECDZ;, were also investigated for each

configuration. Satisfaction of these inequalities indicates that the series
solution is convergent for the combination of parameters under consideration.
The final set of tests in this serijes involved evaluating the u and v
velocity components from the first, second, and third order solutions at a
number of points along the third order M = 0.8, 1.0, and 1.2 constant Mach
number curves and substituting these values into the exact governing equa-
tions. In this context "exact" is used to denote a form of the equations in
which no order of magnitude simpiifications have been made or expansions
assumed. The equations which were utilized in this study are irrotationality

condition (III-8) and gas dynamic equation (III-9), repeated here for

convenience,
u -v =20 (I11-8)
y X
2 -1 2 4 2 -1 2
[1-u - %IT v ]ux - TH uvuy + [l-v - %;T u vy

(1 _xl 2 lil-vzl(v cosB + u sing)
+

Nad ) )
y cos B * X sinB 0. (111-9)

Whereas the identical satisfaction of the equations and boundary conditions
in the expansion formulation, Eqs. (I1I1-38)-(III-42) and (I1I1-48)-(I1I1-53),
verifies the details of the solution development as discussed in the preceding

section, the size of the residuals in the exact equations above provides a
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measure of the validity of the approximations made during the course of tne
formulation. Comparison of the residuals among the various cases studied
also allows conclusions to be drawn concerning the effects of the parameters
on the various assumptions and approximations which have been made. As in
the solution verification studies, the derivatives in the exact governing
equations have been approximated by second order, finite differences with 4
grid spacing of Ax = 4y = 107"
The exact boundary conditions that the velocity vector be tangent to
the bounding walls was also checked along each contour from the M = 0.8 loca-
tion to the M = 1.2 location. This interval was widened in order to include

the throat station for those cases in which it was not already included.

The exact boundary conditions were investigated in the form,

[adiz‘ - tan(e+8):) -0 (111-83)
G(R,Z)=0

[?Tg - tan(e+8)} =0, (111-84)
H(R,Z)=0

where G(R,Z) = 0 and H(R,Z) = O are the equations of the inner and outer con-
tours and (6+8) is the inclination angle of the velocity vector in the
cylindrical R-Z coordinate system.

The basic purpose of these studies was to investigate in an organized
and rational manner the convergence properties of the solution and to deter-
mine if an optimum value of the parameter n could be found that provided
improved solution convergence and simultaneously minimized the residuals in
the exact governing equations and boundary conditions. The main conclusions

of this investigation are discussed below.
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(1) As expected from the problem formulation, all orders of the expan-
sion solution identically satisfy both the exact irrotationality condition
and the boundary conditions for straight walls. Therefore, the significant
tests are the residuals for the exact gas dynamic equation and for the
boundary conditions at curved contours, as well as the convergence prop-
erties of the series solution.

(2) For the smallest wall radius of curvature tested in each of the

groups of geometries, Rc = 0.625, the solutions are highly divergent for

‘ n =0, Fig. IIl.3. This behavior is also expected since for n = 0 the solu-
tions correspond to those of Hall [35] who used the expansion parameter
€ = Rc'l, and for R <1 this expansion parameter exceeds unity. As n is
increased for these configurations, the convergence of the solutions is
dramatically improved, Fig. I1I.4, although for the highest value tested
here, n = 4, the solutions tend to be only slowly convergent, especially away
from the sonic line. Interestingly, as n is increased from zero for these

| small radius of curvature geometries, the convergence of the higher Mach

number contours is improved first.

(3) For configurations with large radius of curvature boundaries, the
high subsonic, i.e., M = 0.8, constant Mach number contours are less con-

vergent than the low supersonic, i.e., M = 1.2, ones for n = 0, Fig. III.5.

For larger values of n, improved convergence of the high subsonic iso-Mach
] curves is obtained somewhat at the expense of the convergence of the low
supersonic ones, Fig. 111.6. It should also be mentioned that for nozzles
with a large throat wall radius of curvature, there is little difference

between the third order constant Mach number contours for various values of n.
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(4) For » = 0, the expansion solution is generally an alternating
series, such that the third order iso-Mach curve for a particular Mach num-
ber lies between those of the first and second order, Fig. IIl.7. As n is
increased, the nature of the solution gradually changes until at n = 4 it is
a slowly convergent, non-alternating type series, Fig. III.8.

(5) For geometries and values of n for which the solutions are conver-
gent, the residuals in the gas dynamic equation are generally reduced as the
order of the solution is increased from the first to the second to the third
order. The residuals in the boundary conditions for the circular arc
boundaries are also generally reduced as the higher order solutions are
utilized with this trend becoming very strong as n is increased from zero.

(6) It appears that the dependence of the residuals in the gas dynamic
equation upon n is directly related to the convergence of the series solu-
tion. Thus, those values of n which result in improved convergence prop-
erties for the expansion solution also generally result in reduced residuals
in the gas dynamic equation.

(7) The residuals in the exact boundary conditions for the circular
boundaries are increased near the throat location as n is increased from
zero, particularly for the larger values of n. This behavior is consistent
with the observations from Eqs. (III-32) and (III-33) that the second
derivatives in the Maclaurin series expansions for the wall contours are
exactly matched only for n = 0 and that the approximations deteriorate pro-
gressively as n is increased.

(8) As found by previous investigators, the geometrical parameter

which is by far the most influential is the radius of curvature of the
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bounding walls. For nozzles having a large radius of curvature, the solution
behavior is generally improved over that for nozzles with sharp throat
curvature, i.e., the residuals in the gas dynamic equation and boundary
conditions are reduced and the solutions are more convergent. This behavior
is, of course, expected since the expansion parameter has been defined as
£ = [Rc+n}‘l. The parametric effects on the solution behavior of the distance
of the nozzle throat from the axis of symmetry and the inclination of the
main flow x-direction from the axis are generally negligible so that the
dependence of the solution on n, the solution order, and the wall radius of
curvature discussed previously are repeated in each of the four groups of
geometries sketched in Fig. Il1.2. Two exceptions to this statement are:
(a) For cases in which both boundaries are curved it

appears that the shift in solution nature from an

alternating type series to a non-alternating one

occurs at lTower values of n than for those cases

in which one boundary is straight.

(b) For the smallest radius of curvature cases tested in

each of the four geometrical groups, the solution

for the conventional axisymmetric configuration,

y, = 0, appears to be the best behaved. For the

other three sharp curvature cases, the M = 0.8, and

in two cases, the M = 1.0 contours were found not to

intersect the highly curved wall, Fig. III.9.

Based on the preceding observations, it is concluded that third order

solutions should generally be used. Also, for configurations with a large
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wall radius of curvature, the expansion solution is essentially independent
of n. However, for geometries with small radius of curvature walls, two
competing effects appear: as n is increased from zero the convergence of
the series solution is improved significantly, but the satisfaction of the
exact boundary conditions in the throat region is compromised, especially
for the largest value tested, n = 4. Ideally, then, the smallest value of n
for which the convergence properties in the region of interest are deemed
satisfactory should be employed. For general use n = 2 is recommended.'
Third order, n = 2 solutions are compared to two existing data sets in
Figs. 1I11.10 and III.711. In the first figure comparison is made to the data
of Cuffel, et al. [30] for an axisymmetric nozzle with a dimensionless wall
radius of curvature of Rc = 0.625. As mentioned in Chapter II, this data
was obtained by means of a small diameter, hollow tube which was stretched
between an upstream stagnation chamber and a downstream vacuum chamber.
This small value or Rc provides a severe test for the expansion solution, and
as can be seen in the figure, the results are in reasonably good agreement
with the data through the throat region except for the high subsonic Mach
numbers, M = 0.6 and M = 0.8. In particular, the M = 1.2 contour appears to
provide an accurate starting line for initiating the hyperbolic computations
for the supersonic region. In Fig. III1.11 the results of the series solution
are compared to the sonic line data of Flack and Thompson [14] for a planar,
symnetric nozzle with a wall curvature of R = 2. The experimental informa-

tion was determined by using static pressure measurements obtained from

"The equivalent recommended value for the simplified, conventional axisym-
metric solution, Appendix C, is n = 1.
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pressure taps located in the sidewalls of the nozzle. For the theoretical
results, the plane, two-dimensional geometry has been approximated by an
annular configuration located a very large dimensionless distance from the
axis of symmetry, y, = 1000. As shown in the figure, the analytical and
experimental sonic lines are of the same shape with the measurements lying
somewhat downstream of the series results. The agreement is within approxi-
mately 3 percent, however, since calculation of the Mach numbers along the
experimental sonic line using the expansion solution results in values of
about 1.03.

As a result of the parametric studies and comparisons presented in this
section, it is felt that the approximate solution which has been developed
is applicable to a wide variety of nozzle configurations including axisym-
metric, annular, and planar ones. As long as the radius of curvature of the
bounding walls is of the order of the throat half-height or larger, and as
long as attention is restricted to the transonic throat region, x = O{el/z],
with the inclination angle satisfying the restriction, 8 /y = 0(1), satis-
factory results are expected. Further comparisons between the theoretical
solution and experimental measurements obtained during the course of this

investigation are presented in the next chapter.
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Table III.1 Solution Tests

Reduction to Previous Solutions for Simpler Geometries

A. Reduction
1. n=20
2. n=2
B. Reduction
1. n=20
2. n=2

C. Reduction

to

to

Straight and

1.
2.

mwou

2, 9"(0)
2, h"(0)

Conventional Axisymmetric Configuration as y, = 0

Hall (35], with corrections by Kliegel and Levine [46}.
Dutton (87].

Planar Symmetric Configuration as y, » >

Hall [35].
Dutton (87] and Thompson and Flack ([37].

Annular Axisymmetric Configuration with One Boundary
Parallel to the Axis of Symmetry.

0 -- Dutton [87].
0 -- Dutton [87].

Independent Numerical Back Substitution into the Governing Equations and
Boundary Conditions (Derivatives approximated with finite differences)
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Table II1.2 Roundoff Error Investigation

(a) Approximate values of y

for perturbation veloci%y components:

at which roundoff error' affects solutions

Single Precision

Double Precision

First Order

7

(2 0vs]

[ul ,vl} 3000 10
Second Oraer
u,,v._ | 60 30,000
2 2)
Third Order
15 1000

(b) Approximate values of y at which roundoff error’ affects solutions
for discharge coefficient constants:

Single Precision

Double Precision

First Order

[CD] 120 50,000
Second Order
(an 20 1500
Third Order
[CD3 10 250
'On the University of I1linois CDC Cyber 175 digital computer
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IV. EXPERIMENTAL INVESTIGATION

As discussed in the literature survey, there have been few experimental
studies of supersonic nozzle throat flows, particularly in terms of flow-
field measurements for axisymmetric configurations. For this reason, an
experimental investigation was performed to obtain flowfield pressure dis-
tributions for a number of annular nozzle geometries including a conventional
axisymmetric nozzle. For the annular configurations, these measurements are

the first ones known to consider more than just the wall pressure distribu-

-tion along one of the bounding walls, while the data of Cuffel, et al. (30]

is the only other set of flowfield data for the axisymmetric, no-centerbody
case. The resulting measurements provide a basis of comparison in order both
to verify the theoretical solution developed in the preceding chapter and to

draw conclusions regarding its range of applicability.

A. EQUIPMENT AND APPARATUS

The main objections to the stretched tube technique employed in (30] to
obtain the nozzle throat flowfield pressure distributions are that the tube
introduces disturbances of unknown magnitude into the flowfield and for off-
axis positions the velocity vector is not necessarily parallel to the tube.
Rather than using this method, the one which has been utilized in this study
is the splitter-plate technique whereby half-section cylindrical models were
constructed and mounted on a plate whose surface corresponds to a symmetry
piane for the axisymmetric geometry. Pressure taps were placed on the
splitter plate in the transonic region of interest from which the desired

transverse and streamwise pressure distributions were obtained.
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The splitter plate also introduces disturbances into the flowfield in
the form of the boundary layers which grow both on the plate and in the
corners where the half-models meet the plate. These boundary layers, of
course, are not present for the full axisymmetric configuration. However,
for the high Reynolds number, favorable pressure gradient, nozzle flows under
consideration, the boundary layers in the throat region are extremely thin.
In fact, sample calculations using the code developed in [88] show that for
the models and ;ypical operating conditions used here, the boundary layer
displacement thickness in the throat region is less than 0.05 mm which is
less than 0.2% of the throat diameter in the worst case. It is therefore
felt that the measurements obtained with the half-section models correspond
closely to the "true" measurements for the full axisymmetric geometries. To
further test this hypothesis both a full-section and the corresponding half-
section models were constructed for a conventional axisymmetric nozzle con-
figuration. Comparison of the wall pressure measurements from the two models
then allows conclusions to be drawn regarding the effects of the splitter
boundary layers. The results of these experiments will be reported in a
later section.

Figure IV.1 is a photograph of the full section axisymmetric nozzle
which was designed and constructed showing the wall pressure taps which were
spiraled around the circumference of the nozzle through the throat region.
Also visible in this photograph are the last few static holes which were
carefully drilled normal to the wall contour; all burrs and irregularities
were removed at the wall in the vicinity of the pressure taps. Unless

specifically stated otherwise, the static holes all have the same diameter
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of 0.51 mm and the model material is aluminum. Figure [V.2 shows the corre-
sponding half-section axisymmetric model. The half-nozzle in the right
background is mounted on the splitter plate in the foreground where the flow
direction is from left to right. The entrance plate, which forms the left
half of the splitter piate, fits inside an existing axisymmetric converging
nozzle whose elliptic entrance section matches the curved boundaries of the
entrance plate. The blocking flange in the left background is attached and
sealed to the bottom of the splitter plate so that no flow is allowed to

leak through the test section under the plate. In addition to the 8 wall
taps on the half-nozzle which were used to obtain the wall pressure distribu-
tion for comparison with that of the full nozzle, 71 static pressure taps
were located on the splitter plate so that the flowfield pressure distribu-
tions could be measured for this axisymmetric nozzle. These taps have been
arranged in 12 staggered rows thereby providing throat region pressure
measurements in a square grid, 3.81 mm on a side. It should also be mentioned
that when the experiments were performed, the screw heads seen on the surface
of the entrance plate were filled in with epoxy and sanded so that the entire
surface of the splitter plate was extremely smooth and highly polished.

In order to obtain data for annular configurations, the centerbody shown
in Fig. IV.3 is added. It should be noted that in terms of the theory pre-
sented in the last chapter, only the central portion of the centerbody, whose
radius of curvature in the meridional plane is 50.8 mm, is of importance.

The cylindrical sections upstream and downstream of this region merely pro-
vide a means for attaching the cehterbody to the splitter plate. By displac-

ing the centerbody relative to the outer nozzle, measurements for various
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annular configurations could be made. As will be discussed in more detail in
a later section, three such configurations were investigated. The splitter
plate in this case is not the same one used for the conventional axisymmetric
geometry of Fig. IV.2 since a slot is required for the centerbody wall taps
and dowel pin and bolt holes are required to locate and hold the centerbody
on the plate. The pressure taps on the splitter plate in this case have

been arranged in 10 alternating rows of 5 taps each so that pressure measure-
ments in a square, 3.18 mm grid are obtained. The measurements from these

50 splitter plate taps together with the 9 centerbody wall taps and the 8
nozzle wall taps allow the pressure field in the annular nozzle throat to be
completely mapped.

Two views of the assembled apparatus of Fig. IV.3 are shown in Figs. IV.4
and IV.5. In Fig. IV.4, the view is in the downstream flow direction through
the test section. In viewing this photagraph, it should be remembered that
the entrance plate is highly polished aluminum so that everything seen on its
surface is a reflection from the half-nozzle mounted on the splitter plate.
The pressure tap grid is detailed in Fig. IV.5, which Tooks upstream through
the measurement region. The shorter row of taps seen below the plate is the
set which passes through the slot in the splitter plate and is attached to
the centerbody for measurement of its wall pressure distribution. In assembl-
ing the half-section models, Loctite anaerobic adhesive was used on all of the
flat mating surfaces and silicone rubber sealant was also employed along all
seams in noncritical regions. Together with the O-rings which were utilized
between mating flanges, this sealing method prevented the occurrence of leaks

in the half-model test sections.
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A photograph of the partially assembled, annular, supersonic nozzle
test section, as it is mounted on the brass converging inlet nozzle, is given
in Fig. 1V.6. The converging nozzle, in turn, is bolted to the faceplate of
one of the tes: stands in the supersonic wind tunnel area of the Mechanical
Engineering Laboratory. However, the supersonic jet cannot simply be
exhausted to ambient conditions because of the very high noise levels
associate. with such a jet. 1Instead, the test section is connected to the
facility silencing system. In this arrangement the supersonic jet exhausts
into a viewing chamber which also contains a conically convergent jet-
catcher/diffuser. A view of the annular nozzle test apparatus as seen
through one of the side windows of the exit chamber is shown in Fig. IV.7.
Downstream of this chamber the jet fiow enters a double-walled silencing
duct before passing through a final silencer and exiting to atmosphere out-
side of the laboratory. An overall view of the assembled test apparatus is
given in Fig. IV.8 showing the first few feet of the double-walied silencing
duct at the right. Dry, filtered, compressed air is supplied to the stagna-
tion test chamber by a Gardner-Denver screw compressor through a 140 m> tank
farm and a 152.4 mm supply line. The pressure in the stagnation chamber is
requlated by means of a Fisher-Governor automatic controller and control
valve. A schematic of the air flow circuit is presented in Fig. IV.9.

Pressures were measured with two CEC type 4-312 unbonded strain gage
pressure transducers. A 0-700 kPa gage transducer was utilized in conjunc-
tion with a 48-port, motor-driven model J Scanivalve to record the test sec-
tion static pressures. The stagnation chamber pressure was also continuously

monitored by means of a 0-1000 kPa gage transducer. These pressure signals
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were conditioned with two Daytronic model 870 conditioner-amplifier modules.
The resulting output signals were recorded from a Daytronic model 890 digi-
tal meter and a Keithley model 179 digital voltmeter for the stagnation and
static pressures, respectively. Additional equipment used in the course of

the experiments is also described in the next sectijon.

B. PROCEDURE

The first step in the experimental procedure involved calibration of the
pressure transducers. This was accomplished by using vacuum and pressure
sources in conjunction with two pressure measurement standards: a Wallace
and Tiernan preciéion mercury manometer for the 0-200 kPa absolute pressure
range and a Wallace and Tiernan bourdon tube absolute pressure gage for the
200-500 kPa range. Of the two devices the precision manometer is the more
accurate, but it is l.mited to the lower pressure range by the allowable
height of the mercury column. The calibrations were completed by obtaining
linear, least-squares regressions between the digital readings of the output
devices and the readings from the precision manometer and the absolute gage.
For both transducers the calibration data was found to be extremely linear.

After the hardware for a given model configuration had been assembled,
the experimental procedure for each test consisted first of recording the
atmospheric pressure from a Setra Systems electronic barometer. The stagna-
tion supply pressure was then set with the Fisher-Governor automatic con-
troller and the static and stagnation chamber pressures read from the digital
output devices as the Scanivalve was stepped from port to port with its
solenoid controller. Since the half-section models all had more than 48

static taps, which is the number of available Scanivalve ports, approximately
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half of the taps were connected to the Scanivalve for a given run and the
rest were blocked off. In later tests these connections were reversed. The
supply pressure in all of the experiments was approximately 400 kPa. It was
not possible to vary this pressure level over a wide range since it had to
be high enough to ensure that the measurement region was free from the shock
waves which occur due to the exit boundary conditions but low enough so that
sufficient time vas available to record the data in these blowdown tests,
For these reasons the Reynolds number based on sonic conditions and the
throat height, Re, ., also was not varied over a wide range.

To check tie repeatability of the experiments, five runs were made for
each geometrical arrangement. For each tap the data was reduced by calculat-
ing the mean and standard deviation of the static-to-stagnation pressure
ratio readings, p/p,, for the five tests. The resulting mean values were
used in all of the data presented in the next section. In all cases the
experiments were found to be highly repeatable. The standard deviation for
a given measurement was generally less than 10 in units of p/p, where this
variable spans almost the entire range from unity to zero through the
transonic throat region. This corresponds to a Mach number standard devia-
tion of 1.6 x 107> at sonic conditions.

Before presenting the experimental results it is appropriate to discuss
the accuracy of the equipment used to obtain the pressure measurements. By
utilizing micrometers and other precision measurement gages, the critical
dimensions of the air flow models, including the static hole locations, were
checked and found to be within + 0.05 mm of the design specifications. Since

the throat diameters of the models range from approximately 32 to 50 mm and
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since the static holes are 0.51 mm in diameter, the inaccuracies incurred in
the precision machinework may be considered negligible. For the pressure
measurements, the least accurate device used in the calibration procedure
and the determination of atmospheric pressure was the 0-1000 kPa bourdon
tube absolute pressure gage. The accuracy of this device is listed as
+ 0.7 kPa. Considering the additional effects of calibration nonlinearity,
amplifier drift, measurement fluctuations, etc., it is felt that the com-
bined accuracy of the pressure measurement equipment is within + 1.5 kPa.
However, since the data is generally presented in terms of the Mach
number rather than the pressure ratio, it is natural to inquire how the
inaccuracies in the individual measurements of the static and stagnation
pressures affect the determination of the Mach number. This question can be
answered by utilizing functional uncertainty analysis which is a technique
whereby the fractional uncertainty of a functional relationship is calculated
from the uncertainties of the individual measurements involved in it. As
such it excludes the random errors of particular measurements and is concerned
only with the accuracy of the measuring devices, or systematic error. The
fractional uncertainty of a function F which depends on i variables, F = F[@ ],

is given by the expression [89],

1/2
Ulx 2
UQF) - dlnF i -
F % alnﬁ X, ’ (1v-1)

where U is used to denote the uncertainty. For the case at hand, the isen-

tropic relation,

-1
Po _ [] +Léle]Y/(Y ) ’ (1v-2)
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is employed to counvert the pressure ratio to the corresponding Mach number.

Using logarichmic differentiation, it is easily shown that,

_‘I 2

I

donM _ 3inM Tt (Iv-3)
5P, EN M

Therefore, the fractional uncertainty for the Mach number may be determined

from,
-1 2 2 1/2
]+I_M Up -2
upn _ |17 M Y(Re] . ue) (1v-a)

Using 1.5 kPa as the uncertainty of both the static and stagnation pressure
measurements and 400 kPa as the value of the stagnation pressure for these
experiments, the corresponding fractional uncertainty of the Mach number can
be calculated through the transonic region. For M = 0.6 a value of 1.3% is
obtained, while for M = 1.4 the fractional uncertainty in the Mach number is
0.63%. Similarly, the fractional uncertainty for the static-to-stagnation
pressure ratio, p/p,, is found to be 0.61% at M = 0.6 and 1.25% at M = 1.4,
Thus the inaccuracies in the determination of both the Mach number and pres-
sure ratio attributable to the measuring devices are expected to be on the

order of one percent for the flowfields investigated here.

C. COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS

Experimental measurements for a conventional axisymmetric configuration
and three annular ones were obtained. A half-section drawing of the particu-
lar annular arrangement for which the centers of curvature of both the inner
and outer wall contours lie along the Z = 0 plane is presented in Fig. IV.10.

A1l dimensions are in millimeters. The air flow enters the test section from
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the stagnation chamber at the left where it is first accelerated through the
converging nozzle with its elliptical entrance section. At the exit of the
converging nozzle the flow cross-sectional area has been reduced to a

50.8 mm radius. Further acceleration then occurs in the annular supersonic
nozzle. Along the outer nozzle wali, a constant area cylindrical region is
followed by 37.5° conically convergent section which is tangent to a circular
arc contour. In the meridional plane, the radius of curvature of this arc

is 25.4 mm, and the radial distance to the minimum point on the outer wall
contour is also 25.4 mm. Along the centerbody, the flow is first accelerated
from the stagnation point through a 25.4 mm radius arc to a cylindrical
region with a 6.4 mm radius. This section is followed by a circular arc con-
tour whose radius of curvature is 50.8 mm and a second, downstream cylindri-
cal region with a 6.4 mm radius. The radial distance to the maximum point on
the centerbody contour is 9.5 mm. For the axisymmetric, Laval nozzle case,
the dimensions for the outer nozzle are identical, and the centerbody is
simply removed. The other two annular configurations are obtained by dis-
placing the centerbody relative to the outer nozzle both upstream and down-
stream by 12.7 mm. For these two configurations the main flow x-direction is
jnclined with respect to the Z-axis of symmetry.

To facilitate comparisons between the various configurations, the coordi-
nate system used in the presentation of the data is the R-Z cylindrical system
shown in Fig. IV.10. In this case the radial R-axis passes through the mini-
mum point on the outer wall contour and the non-dimensionalizing length is
chosen as the radial distance to this minimum point. This distance is also

the same as the radius of curvature of the outer wall, 25.4 mm (or 1 inch).
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In Fig. IV.11 the wall measurements from the full- and half-section
models for the conventional axisymmetric configuration are compared. The
pressure measurements were converted to Mach numbers using the isentropic
relation, Eq. {IV-2), and for this case, the wall radius of curvature is
equal to the throat half-height, Rc = 1.0. As can be seen in the figure,
the wall Mach number measurements for the two models are essentially identi-
cal, with the root-mean-square difference between the data sets calculated to
be (AM)rms = 0.89 x 10'2. For the first two and last four pressure taps in
the streamwise direction, the Mach numbers measured with the half-section
model are slightly higher, while at the remaining two axial stations,
Z=-20.3and Z = - 0.15, the Mach number data for the full axisymmetric
model is higher. These small, somewhat random differences between the mea-
surements could, in part, be due to slight differences in the pressure tap
locations for the two models since precise location of the taps on the curved
walls was difficult both to achieve and to check. In any event, the very
near coincidence of the two data sets lends credence to the argument that the
measurements from the half-models should closely approximate those for the
corresponding full axisymmetric geometries. Due to its thinness, the bound-
ary layer on the splitter plate apparently has little effect on these
measurements.

Also shown in Fig. IV.11 are the inviscid, wall Mach number results
obtained from one-dimensional, isentropic, flow with area change analysis
and also from the series solution developed in Chapter III. As in all of the
comparisons to be made in this section, the third order, n = 2 expansion

results are utilized as recommended in section III.D. From somewhat upstream
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of the throat location, Z = 0, on downstream, it is seen that the one-
dimensional analysis is seriously in error while the series solution results
agree fairly well with the measurements. However, at the two most upstream
wall tap locations, Z = - 0.6 and Z = - 0.45, the one-dimensional results
agree more closely with the data th n do the results of the expansion solu-
tion. This lack of agreement between the series solution and the wall data
at these upstream stations can be attributed to two approximations made in
the theoretical analysis. First, since the transonic approximations embodied
in Eqs. (I11-10) and (I111-11) have been utilized, it is expected that the
solution will be valid only for nearly sonic conditions, i.e., M = 1,
Therefore, for the relatively low Mach numbers measured at the two upstream
taps, M = 0.5, it is not surprising that the series solution results do not
agree well with the data. On the supersonic side, however, it is seen that
the expansion solution agrees with the wall measurements for Mach numbers
well above 1.5. Probably more important is the assumption that the coeffi-
cients in the Maclaurin series expansion for the wall contours have the same
order of magnitude estimates as those for circular arcs. From the axial
Tocation Z = - 0.6 downstream to the exit, the outer wall contour of the
experimental model is, in fact, a circular arc with Rc = 1.0. However,
upstream from this station, the wall contour of the model consists of a
37.5° conically convergent section. Hence, it would not be expected that
wall measurements taken near the tangency point between the conical inlet
and the circular arc contour would agree well with the theory. The transi-
tion in the contour from a conical to a circular section is not allowed for
in the analysis since no provision is made for the discontinuity in the

second derivative which occurs at the tangency point.
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Figure IV.12 presents a comparison between the contours of constant
Mach number obtained from the expansion solution and those determined from
the splitter plate measurements of the half-section model for the axisym-
metric, Laval nozzie under consideration, RC = 1.0. The data points were
found by first converting tie stagnation supply pressure measurement and the
individual static tap pressure readings to the corresponding locai Mach num-
bers using Eq. (IV-2). Since the constant Mach number contours for the
configurations studied here are primarily radial in nature, the data points
were determined by finding the axial Z-location at which the given Mach num-
ber was attained along each of the pressure tap rows that is a constant
radial distance from the axis of symmetry. In addition to the outer wall,
there are seven such rows: R =0, 0.15, 0.3, 0.45, 0.6, 0.75, and 0.9.
Hermite spline interpolation was utiiized in obtaining the loci of the points
at which the Mach number values of interest occur from the measurements of
the individual taps along each row.

As can be seen in the figure, the correspondence between the series
solution results and the experimental measurements is generally quite good
except for the M = 0.6 contour and near the wall for the M = 0.8 iso-Mach
curve. The disagreement in these regions can again be attributed to the
fact that upstream of the Z = - 0.6 location the wall contour of the experi-
mental model is conically convergent rather than being the circular arc
contour of the downstream region as used in the implementation of the expan-
sion solution. The experimental M = 0.6 contour is a nearly uniform, radial
one which explains the agreement between the one-dimensional analysis and

the wall measurements of Fig. itV.11 in the upstream region. In view of the
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transonic approximations that have been made, the series solution developed
in the preceding chapter would be expected to accurately predict the throat
flowfields only for regions near the sonic line. Thus, the agreement
between this analysis and the experimental data for Mach numbers up to 1.4
through such a wide region of the throat is somewhat surprising, particularly
for the small wall radius of curvature of this model.

In Fig. IV.13 the expansion solution results are compared to the splitter
plate flowfield measurements for an annular nozzle whose inner wall radius of
curvature is twice that of the outer wall. This is the configuration drawn

in Fig. IV.10 for which the centers of curvature of both wall contours and,

therefore, the throat all lie along the Z = 0 plane so that the one-dimensional

flow direction is parallel to the axis of symmetry, 8 = 0. Since the maximum
radius of the centerbody is 0.375 units in these R-Z coordinates, the throat
half-height is reduced to d = 0.625 resulting in dimensionless radii of
curvature of R . = 3.2 and R,, = 1.6 for the inner and outer walls,
respectively. The dimensionless distance to the inner throat wall location
is y, = 0.6. The data points have been obtained in a manner similar to that
described for the conventional axisymmetric geometry of Fig. IV.12 except
that for this and the other two annular configurations investigated, there
are five rows of pressure taps at a constant radial coordinate in addition
to the inner and outer walis: R = 7/16, 9/16, 11/16, 13/16, and 15/16. It
is seen that the theoretical results correspond very closely to the measure-
ments except, perhaps, near the tangency point between the conically conver-
gent section and the circular arc contour along the outer wall, Z = - 0.6.
Otherwise, the agreement is very good through the entire throat region from

M=0.6toM=1.4,




Figure IV.14 presents the comparison between the theoretical and experi-
mental results for the annular configuration in which the centerbody has been
translated downstream relative to the outer wall contour by a distance of
12.7 mm or G.5 units in the R-Z coordinate system of the figure. For this
geometry the main flow direction is inclined at an angle of approximately
5.45° (0.095 radians) away from the axis of symmetry. Also, the throat half-
height is larger than for the preceding case in which the centers of curva-
ture of both walls were on the Z = 0 plane so that the radii of curvature
and distance to the inner throat wall location in the local x-y coordinates
are all reduced: RCi = 3.01, RCo = 1.50, and y, = 0.51. Since this is the
first example for which the lTocation of the minimum area cross section is not
obvious, it has been plotted as the dashed line in the figure. Also shown
by the dotted Tine is the cross section of minimum distance between the two
contours which joins their centers of curvature. As previously mentioned, the
minimum area throat cross section for inclined nozzles is nearer the axis of
symnetry than is the cross section of minimum distance, and, as can be seen in
the figure, the two are not necessarily parallel. Even for the relatively
small inclination angle of this configuration, there is a significant distance
separating the two cross sections because of the relative proximity of the
throat to the axis of symmetry. In comparing the analytical and experimental
results in this figure, it is noted that the correspondence is quite close
except in the upstream regions near the two walls where the circular arc con-

tours of the experimental models end. /long the centerbody, the circular

inner contour meets the upstream cylindrical section at Z = - 0.2, while the
circular arc outer contour is tangent to the conical inlet at Z = - 0.6.
i
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Elsewhere in the flowfield, the agreement between the theoretical and experi-
mentail iso-Mach curves fromM = 0.6 to M = 1.4 is quite good.

The final experimental geonetry investigated is shown in Fig. IV.15. In
this case the centerbody was displaced upstream relative to the outer nozzle
wall by 12.7 mm or 0.5 units in the R-Z coordinate system. The one-
dimensional flow direction is inclined toward the axis of symmetry at an
angle of 5.45°, and the cross sections of minimum area and minimum distance
between the contours are identical to those of the preceding configuration
as reflected through the Z = 0 plane. The radii of curvature and the dis-
tance to the inner nozzle wall also have the same values as the last example:
RCi = 3.01, Rco = 1.50, and y, = 0.51. For this case the theoretical and
measured Mach number contours are compared only for Mach numbers up to
M =1.2. For higher Mach numbers, the measurements were disturbed by the
presence of a detached, obiique shock wave emanating from the inner wall
near Z = 0.2 where the supersonic flow along the centerbody is turned paral-
lel to the downstream cylindrical section. The series solution results
again agree quite well with the experimental data except in the upstream
region along the outer wall near the Z = - 0.6 tangency point.

Cross-plots comparing the experimental wall Mach numbers with those
determined from the expansion solution and from isentropic, one-dimensional
analysis could also be presented for the three annular configurations as was
done for the conventional, axisymmetric nozzle, Fig. IV.11. However, as can
be seen by studying Figs. IV.13-1IV.15, the resulting figures and conclusions
would all be similar to those for the Laval nozzle. Near the throat and

downstream of it, the series solution agrees well with the measurements of
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the Mach number along the walls, while the one-dimensional results are in
error. However, in the upstream regions where the circular arc wall con-
tours of the models make transitions to either conical or cylindrical
sections, the agreement between the expansion solution and the data is
understandably not as good.

Without exception, it is noted that in regions of the flowfields
unaffected by the wall contour transitions, the shapes of the experimental
and theoretical Mach number contours are similar but the measurements lie
slightly downstream of the analytical results. This observation applies not
only to the comparisons made in this section, Figs. IV.12-1V.15, but also
to the comparisons made with existing data sets in Chapter III, Figs. III.10
and IIT.11.

One cause of this behavior results from the fact that the analysis is
an inviscid one while the effect of wall friction causes a shift in the
actual sonic line downstream from the corresponding inviscid one. This can
be shown by means of the following argument. For a perfect gas with constant
specific heats, one of the differential equations governing generalized one-

dimensional flow with friction and area change may be written as [90],
----- s (1v-5)

where u is the one-dimensional velocity, dF is the elemental wall shear force
opposing the flow, p is the static pressure, and A is the flow cross-sectional
area. At the sonic line the left hand side of this equation vanishes, resulting
in,

da = 9F (1V-6)
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Ctree tne wail snear force and the static pressure are inherently positive, dA
~ust oalse te a positive quantity. It is therefore concludea that the effect
ot friction is to shift the sonic line downstream into the diverging part of
the supersoric nozzle for which dA/dx - O.

A secone reason that the experimentally determined iso-Mach curves are
generally sligntly downstrean from the theoretical predictions is related to
measurement errors introduced by the static holes. Since the pressure cali-
brations were performed in a no-flow test in which the transducers were
directly connected to a pressure source, the accuracy estimate made in the
previous section considered only the errors resulting from the transducers,
signal conditioning equipment, calibration procedure and equipment, etc.
However, with flow across the holes an additional error is present since it
is well known [91-94] tnat the pressure measured by a static hole is not
necessarily identical to the static pressure in the flowfield at that point.

The pressure tap configuration usea in this study is shown in Fig. IV.16.
[t is very similar to the one used by Shaw [92] in his study of pressure tap
errors with the inside diameter of the tap twice tnat of the hole. Also, in
the present experiments the hole depth to diameter ratio, L/dh, was nominally
equal to two. Using dimensional analysis and the results of extensive exper-
iments for incompressible turbulent fiow, Shaw correlated the static pressure
errors as a function of the hole depth-to-diameter ratio and the Reynolds

number based on the hole diameter and friction velocity,

4P - f[Re+,Z/dh] (1V-7)

To

where

- - o e e e sy - o - e e - = —— —- ~

_. &




Fe . o ; (Iv-m)

15 the wali shear stress and . is the kinematic viscosity of the fluid.
Shew found that for deep holes, '/dI 1.5, the pressure error is positive
and s ingependent of the hole depth, . The dimensionless error, “p/: .,

e

increases from zZero at Re’ = 0 until it reaches an asymptotic value of 2.75
at Re’ = 300, above which the error is constant.

Using a somewhat different pressure tap configuration, Livesey, et al.
[93) performed a similar set of experiments and analysis of static hole
errors. Tne results were correlated in the same form as those of Snaw, but
for deep holes it was found that the positive error does not reach an
asymptotic 1imit out instead increases monotonically and nearly lineariy for
all hole Reynolds numbers. Below Re' = 1000 the error predicted by the
correlation of Livesey, et al. is lower than that found by Shaw. At
Re+ = 1000 the correlations intersect so that above this point the monotonic-
ally increasing error predicted by Livesey, et al. exceeds the limiting value
of Shaw.

[t is important to note that the positive static pressure errors found
by both of these investigators are consistent with the trends exhibited in
Figs. I1I1.10, II1.11, and IV.12-1IV.15. For these cases the Mach number
measured at a given point is Tower than the corresponding predicted value
so that the static pressure is higher. Therefore, taking into account the
predicted static hole errors puts the data and theory in closer agreement.

By using the boundary layer analysis developed in [88] to predict the wall

shear stress, it is found that the hole Reynolds numbers for the experiments
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of this investigation ranged from Re' = 870 at M = 0.6 Lu Re’ = 1120 at
M= 1.4, For these values, the errors predicted by Shaw and Livesey, et al.
agree quite closely so tnat Shaw's limit of ;p/ro = 2.75 was used. For

M = 0.6 this corresponds to a static pressure error of approximately + 0.2%

while for ¥ = 1.0 and M = 1.4 the errors are calculated as + 0.55 and + 0.9,

respectively. The percent root-mean-square difference between the theoreti-
cal and measured values of the static pressure for the data presented in
Figs. IV.12-7V.15 is somewhat higher than these predictions for the static
pressure error. For the axisymmetric, Laval nozzle of Fig. IV.12 the per-
centage difference is found to be (Ab/p)”ns = 3.5%, while for the annular
configurations of Figs. IV.13, IV.14, and IV.]S the differences are 2.5%,
2.6%, and 3.3%, respectively. It should be remembered, however, that the
investigations of both Shaw and Livesey, et al. considered only incompress-
ible flow. Rayle [91], as reported by Chue [94], found that for transonic
speeds the static pressure error is two to three times that for incompress-
ible flow for the 0.51 mm diameter static holes used in this investigation,
Thus, the static hole errors mayAbe as large as 2-3% for these experiments.
It is felt that the major reasons for the downstream shift of the
experimental constant Mach number curves from the corresponding analytical
ones are the two just discussed: wall friction, which is not accounted for
in the theoretical model, and errors in the static pressure measurements.
Other effects such as heat transfer, condensation, particulates suspended
in the flow, etc. are thought to be negligible. It should be emphasized
that the discrepancies are small and, for the most part, the agreement
between the measurements and the theory is quite good through a surprisingly

wide region of the throat flowfields.




Figure IV.1
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Photograph of full-section, conventional
axisymmetric nozzle
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Figure IV.2 Photograph of disassembled, half-section,
conventional axisymmetric nozzle
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Figure IV.3

Photograph of disassembled, half-section,
annular nozzle
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Figure IV.4 View downstream through test section of assembled,
half-section, annular nozzle
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Figure IV.5 View upstream through measurement region of assembled,
half-section, annular nozzle
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Figure IV.6 Partially assembled, annular nozzle test apparatus
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Figure IV.7 View of annular nozzle through side window of
viewing chamber
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Figure 1V.8 Overall view of fully assembled, annular nozzle
test apparatus
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Figure IV.10 Half-section drawing of annular axisymmetric experimental
configuration; all dimensions are in millimeters
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Figure IV.11 Comparison of full- and half-section wall Mach number measure-
ments with one-dimensional solution and series expansion
solution for conventional axisymmetric nozzle; Re, = 2.68 x 10°

for full nozzle and Re,, = 3.09 x 10" for half nozzle experiments
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Figure IV.12 Comparison of constant Mach number contours from series
expansion solution with experimental data for conven-
tional axisymmetric nozzle; ReZd = 3.04 x 10° for
experiments
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expansion solution with experimental data for annular
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Figure 1V.14 Comparison of constant Mach number contours from series
expansion solution with experimental data for annular
nozzle with centerbody center of curvature along Z = 0.5
plane; Re_. = 2.08 x 10° for experiments [Flagged data

point obtained by extrapolation]
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Figure IV.15 Comparison of constant Mach number contours from series
expansion solution with experimental data for annular
rozzle with centerbody center of curvature along
Z = - 0.5 plane; Re2d = 2.08 x 10" for experiments
[Flagged data points obtained by extrapolation]
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V. CONCLUSIONS AND RECOMMENDATIONS

As a result of the integrated theoretical and experimental investigation
of nozzle throat flowfields which has been reported herein, the following
conclusions may be drawn:

(1) The approximate series expansion solution which has been developed
provides a direct means of analyzing the transonic flow in the throat region
of a wide variety of two-dimensional nozzle configurations including axi-
symmetric, annular, and planar nozzles. For annular nozzles, the throat may
be inclined with respect to the axis of symmetry, and for both planar and
annular geometries the two bounding walls may have unequal radii of curva-
ture at the throat.

(2) Based on the series of parametric studies which was performed, it
is suggested that third order solutions be employed together with n = 2,
where n is the parameter in the expansion variable definition, Eq. (I11I1-22).

(3) From the parametric studies and from comparisons between the series
solution results and experimental data, it is concluded that the expansion
solution accurately describes the transonic flowfield through a significant
region of the throat for nozzles whose wall radius of curvature is of the
order of the throat half-height or larger. In addition, for an axisymmetric
nozzle with the small dimensionless wall radius of curvature of Rc = 0.625,
it was found that the series solution is accurate from the sonic line up to
a Mach number of approximately 1.4.

(4) An accurate, slightly supersonic starting line for initiating the
hyperbolic computations for the supersonic portion of the flowfield is the

constant Mach number contour emanating from one of the throat wall locations.
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This initial value line is recommended because the wall boundary conditions
are exactly satisfied only at the throat. It may be more convenient,
however, to use other starting lines for compatibility with the scheme used
to analyze the supersonic flowfield.

(5) The numerical implementation of the expansion solution is
extremely fast and reliable since it simply consists of the straightforward
evaluation of a serijes of constants and functions. Typical problems require
less than two seconds of central processor (CPU) time on the University of
I11inois CDC Cyber 175 digital computer. This feature makes feasible para-
metric studies and iterative calculations as might be necessitated in the
nozzle design situation.

(6) For applications in which a very high degree of accuracy is
required, it may be advantageous to employ the approximate series solution
as the initial condition for one of the time-dependent numerical techniques.
This scheme may speed the convergence of the time-dependent methods to the
steady state asymptotic limit.

(7) Based on the comparison of the wall pressure measurements from the
full- and half-section models of the conventional, axisymmetric nozzle, it
is concluded thet the splitter plate technique is valid for obtaining
flowfield pressure distributions for these high Reynolds number, accelerated
flows. The boundary layer on the splitter plate is extremely thin so that
it has little effect on the flowfield pressure measurements.

(8) For the axisymmetric, Laval nozzle and the three annular configura-
tions investigated here, the agreement between the theoretical and experimental

results for the constant Mach number contours is quite good through a




- ot

119

significant region of the throat. Only near the points where the circular
arc contours of the experimental models make transitions to either the
conical inlet or cylindrical approach sections is there a noticeable dis-
crepancy between the analysis and the measurements.

(9) The small downstream shift of the experimental iso-Mach curves
from the corresponding theoretical ones can be attributed to wall friction,
which is neglected in the theory, and to pressure measurement errors
related to the static pressure taps.

The understanding of the topic of internal transonic flowfields is by
no means complete. To further enhance the state of knowledge in this area,
the following studies are recommended:

(1) Through the use of alternate expansion techniques it may be possi-
ble to obtain solutions which are valid for nozzies whose throat wall radius
of curvature is small compared to the throat half-height. Alternate expan-
sions should also be investigated for the case of highly inclined, annular
nozzles, particularly for the radial flow case which has practical applications.

(2) The possibility of extending the series solution technique to uncon-
ventional, three-dimensional, supersonic nozzles should also be investigated.
It is felt, however, that the most likely candidates for analyzing the flow-
fields in this class of nozzles are numerical methods.

(3) In order to investigate the effect of the Reynolds number on these
flows, experimentation over a wider range of pressures is needed. Additional
experiments are also required for nozzles having a small throat wall radius
of curvature and for highly inclined annular nozzles.

(4) For further flowfield information, such as detailed measurements of

the velocity components, a laser doppler velocimeter system may be employed.
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The theoretical solution and experimental static pressure measurements of
the present investigation provide a basis for setting up and checking out
such a system.

(5) An area which seemingly has received very little attention is that
of converging-diverging nozzles operating in the unchoked, Taylor regime
for which the operating pressure ratio is important. An important applica-
tion of this problem is jet engine inlets for subsonic aircraft.

(6) In a related area, it appears that additional work is needed to
better understand static pressure tap errors which are incurred in compress-

ible flow measurements.
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APPENDIX A. INVESTIGATION OF EQUATIONS FOR
CIRCULAR ARC CONTOURS

Assuming that the bounding walls of the annular nozzle are circular 1
arcs, their equations in the x-y coordinate system may be written as
(x-a )2+ (y-b, > =R’ (A-1)
2 . 2 .
and (x—ao) + \y—bo) = R s (A-2)
where (ai,bi) and (a_,b_) are the coordinates of the centers and R, and R _

are the radii, Fig. A.1. In the Maclaurin series expansions of these con-

tour equations,

2 3

y=9(x) =y, * g (0)x+g"(0) 3r+g"(0) 3r+ ... (A-3)
2 3
y = hi{x) =y +h'(0)x + h"(0) %T‘ + h™ (0) %T oo, (A-4)

[]

the coefficients can be calculated as

a. -
9'(0) = ( 2 l2?1/2 g'(0) = 2 C; 3/2
Rci—aij l Rei ™9
0} (A_S)
3R %a , -3R ?{R ?+4g;l w
gm (0) - ci 1 glv (0) = ci ci i
2 2)5/2 2 2]7/2
R .—a,J / IR ,-a,] |
c1 1 [+ 1
and
h'(0) % (0) e
'(0) = h(gQ) =
2 a2 1/2 IE_EtEEI?77
co o co [»]
(A-6)
h (0) = -3Rc:a° hiv (0) - 3Rcc2> Rc:+4azl
(0) = B ( 2 2]7/2
-a R “-a
co [ co o]
?-aﬂ ———— - - — © w—— — S p— - — - - K anahthema el — - e e - —— -~ s -y
1 ‘ *
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From the definition of the expansion parameter, Eq. (III1-20), it is known
that the radii of curvature, R, and R ,are (<7'). However, as can be
seen from Eqs. (A-5) and (A-6), estimates for the x coordinates of the
centers, a and a, must also be obtained in order to complete the order of
magnitude analysis of the Maclaurin series coefficients.

To do this, the cross-sectional flow area in the nozzle throat in x-y

coordinates is first written as

(h(X)R h{ x)
A(x) = 27 J gdy =2n I (x sindty cosg)dy , (A-7)
g(x) g(x)
where the transformations in Eqs. (III-3) and (III-4) have been used. Per-
forming the integration and using the exparisionc in Eqs. (A-3) and (A-4),

the first few terms in the expression for the area are

Aé%‘ - ggEE-[yj—yf] * [gin@(yo-yi) + cosB(yoh'(O)-yig'(O))}x

(A-8)
+ [;ine(h'(O)-g'(o)) + £538 [yoh"(O)-yig"(O) + h'(O)z-g‘(O)ZHx2

+ ..
Since by definition the area is minimum at the throat plane, x = 0, dA/dx
must vanish there. This leads to the relation
tang =y, g'(0) - yoh'(O) . cosg # 0 (A-9)
since Y-y, = 1. Defining an average, symmetric throat slope, j'(0), and an
average y location in the nozzle throat, y, by

2yj*(0) = y,9'(0) - y_h'(0) , (A-10)

"The radial flow case, B = /2, was previously ruled out, Eq. (III-28).
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Eq. (A-9) yields the following relation for j'(0),

3 __]_ tani‘; _
3oy =g (A-11)

In view of the previous restriction placed on tan:/y, £q. (111-30), the
throat slope quantities, j'(0), g'(0), and h'(0), may be estimated as
(ts/z). Combining this information with the expressions for g'{0) and
h'(0) from tqgs. (A-5) and (A-6) and the fact that the radii R, and R are
;(e'l) results in the conclusion that the x coordinates of the centers of
curvature, a and a, are f(gl/z) under the present assumptions. The order

of magnitude estimates for the Maclaurin series coefficients for circular

arc boundaries can then be completed as,

g'(0), h'(0) = o(*/?) 9"(0), h"(0) = ofe)
g™ (0), h™ (0) = o(e’/?) ¢” (0), WY (0) = o(c®)

(A-12)

Although the details of the boundary condition evaluations have been
presented here only for circular contours, the results are also valid for
other contours whose Maclaurin series coefficients have similar orders of
magnitude. Thus, the solutions developed in Chapter III are expected to
apply to other conic section contours such as parabolic, hyperbolic, and
elliptic arcs. It should also be noted that the boundary conditions at
straight walls are identically satisfied since the wall slope is exactly

matched and all higher derivatives vanish for this case.
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Figure A.1 Configuration and nomenclature for investigation of
circular arc contour equations
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APPENDIX B. SOLUTION SUMMARY

Referring to Fig. I1I1.1, the only quantities which need to be specified
in order to initiate the solution are: v, the ratio of specific heats; -,
the parameter in the expansion variable, Eq. (III-22); N, the number of
terms of the series to be included; and the equations for the inner and
outer wall contours, G(R,Z)=0 and H(R,Z)=0. With the geometrical configura-
tion given, the following quantities may be determined: the minimum area
cross-section, i.e., the throat wall points (Zi,Ri) and (ZO,RO); d, the
throat half-height; Z*, the Z-location of the x-y origin; and &, the angle
of inclination of the x-axis with respect to the symmetry axis. Utilizing
the coordinate transformations 1isted in Eqs. (III-3) and (III-4), the
parameters y, , y_, 9'(0), h'(0), g"(0), and h"(0) in the x-y coordinate
system can be evaluated; y = g(x) and y = h(x) are the transformed equations
of the boundaries.

In order to carry out the initialization of the solution as well as
its further evaluation, a library of FORTRAN routines has been developed
and used. The throat plane is located numerically using a pivoting scheme
whereby the location of the inner or outer wall point is alternately fixed
and a sweep is made across the opposite contour until the minimum area sec-
tion for the given fixed point is found. This process is continued until
the fractional change in area between iterations is less than a prespecified
convergence value, e.g., 107'°. This method has been thoroughly checked by
substituting results obtained with it into the Lagrange multiplier formula-

tion of the probiem of minimizing the flow cross-sectional area in an

r.’&v,_—.—*’,_ . o e ~T - — a2 s i - . m—— —— -
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annular nozzle with circular arc walls. Since the resulting equations have
been found to be satisfied to a high degree of numerical accuracy, e.g.,
residuals on the order of 107" or smaller, it is concluded that this method
can be used to locate accurately and reliably the throat plane. The contour
derivatives g'(0), h'(0), g"(0), and h"(0) are also evaluated numerically
using second order accurate, centered differences and a nodal spacing of

Ax = 10°°.

The truncation error is therefore on the order of 10”° which is
sufficiently accurate for the present purposes.

Once the quantities mentioned above have been found, all of the flow-
field properties of interest can be determined by the straightfecrward
evaluation of a series of constants and functions. Given the point (Z,R)
at which the information is desired, transformation Eqs. (I11-3) and (I1I-4)

are first employed to find the corresponding (x,y) coordinates and the fol-

lowing parameters are then evaluated,

. _h"(0)-q9"(0)

£ = B (0)-g" (0] (B-1)
-1/2

z= {1%1’6] X (8-2)
-1/2

9, = (i§l /%' (0) (B-3)
-1/2

ho = (x%l} e3/2p1(0) (B-4)

24" (0)

92 = h" 0 _gl 0 (B-S)

h = huzg (g)n 0 (B"G)

The transonic perturbation velocity components (ul,vl), (uz,vz), and

N

(us,vs) are then found as follows.
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First Order Solution

The u and v, velocity components from the first order solution are

given by,

u (z,y) = A (y) + B, +Bz
VI(Z’Y) = A(;(.Y) + Al'(y)z ’

where the constants are determined in the following order,

g - :lpzyi_gzyo}yoyi

2 2
Y-y,

-B 1/2

_ 1 3.3 1
B,= 7 By, * BBy lny, -7 BBy

T

o - 1

1 33 ]
B, =7 By, * BBy Iny - E-Blszyi - B
B = '[hxyi'glyo' B4yi-85y;]yoyi
3 2 2
yo-‘yi
hlyo-B4‘yo-BS
B = —_— -
0 B \2
l'yo
B =BB -8B
6 o1 2 1°2°

and the functions of y are determined as,

B
' - n2 2
AL(y) = By + 57
2V 22
A (y) =5 By +B,lny

(B-10)

(B-11)

(B-12)

(B-13)

(B-14)

(B-15)

(B-16)

(B-17)

- S e =
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3 1 Bs

' N -
A(.Y) “EBly 1 y

The discharge coefficient constant CDl is found as,

_ 1 2

CD4 _ZBon '—]—68182
1 2 1,2 ]

Cpo = 5 B + 782 - 5 BB,
_ 1,2

Coe = BB, - 7 B,

1 4l e 6 4 4 2 2 T o2 2/, 2 2
o B 1) o] ) < 02 o P o

2 2
* Lo [-Yo Iny,-¥; Iny; ]

2 4 4
*z Ble[yOZnyo—innyi

Second Order Solution

+ BB,y Iny - ?'Bley -8 *+ BByt —.

(B-18)

(B-19)

(8-20)

(B-21)

!

(B-22)

The u, and v, velocity components from the second order solution are

given by
u,(z,y) = [C (y) + D)1 + [2C,(y) + D1z + D,2"

v,(z.y) = Cy) + Cly)z + Ci(y)Z°

where the constants are determinea in the order,

Dy = % ny: * Blny, + B
D, = hD,

D; = h,n + h,Dy + h B

D, = h,B,

D, = %-B:yf * Bylny, *+ B
D, = ng7

(B-23)

(B-24)

(B-25)
(B-26)
(B-27)

(B-28)

(B-29)

(B-30)
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o {2y-1)p3
e 3,
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1712

]

1711

)
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o
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+ 28,

o
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48D, + 287D, + (2y+1)B;
2
88,0, + 48D, + (4y-2)B B,

. 2 2
4878, + 48D, + (4y-2)B B,

] 3 ] 1 1
70,59 * [? 0)s- Zbu}yo * 73D,y

1
Y, *7 Dl4yi Iny,

ID9yo-05‘yi -0, 4%, %D, Y, ]yi Yo

n

2
y -

-}

i Dsyo-D”yO 'Dle
2
281y°

2
yi

(8-31)

(B-32)

(B-33)

(B-34)

(B-35)

(B-36)

(B-37)

(B-38)

(B-39)

(B-40)

(B-41)

(B-42)
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ID,s - 4D, * 28D, (8-43)
%0\9 i Jgou (B-44)
Bfolz %81013 * {3}1}_]8? (B-45)
28,0, + B2D, + (2y-1)B 8] + 2BD, + 2878, + %-BTBZ (B-46)
- _g_ Blgf (B-47)
- 288, - BB, (B-48)
48D, + (2y+1)8 B, (8-49)
28,0, + 287D, + % B,D,, + (2y+1)8’B, (8-50)
48D, + 28,0 + (4y-2)B BB, + 28D, + 28, B (B-51)
2B D+ (2y-1)B.B, + 2B;B, + 2B,B, (B-52)

1 1 1

2 ] 3
+ ? Dzsyo (Zn‘yo} * E 026‘yo

+ {024 + 81 B2

[+]

1 5

1

1 2 1 3
* 350,y (Z”yi ] + 7 056,

Lny
+ 2B B, ; P+ (Dz4+8182]

5 3 1
§ 0,9, ¢ [E 02" T8 Dza}yo * 30,5y

o

)

1

1 3 2
50,9 * (I 0,." 7% DZ&]yi * 30,y

Iny, *+ (%

2 1 ] 1
o ¥ [I D5~ 7 D27% 7 Dy lY,

1
00" 2 Dzslyolnyo - Blelnyo
(B-53)

1 1 1
* (E 0,5~ 7 02% 3 Dzs]yi
D. - 40, |y my - &8, 1
277 7 V25 | Y OV, 19277

(B-54)
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- -D )
[Dayo D4‘yi D3l‘/o+D30yiﬂi_‘!9_

2 2

_ D%, -050Y,70,

i

i}

"

2
Bl‘yo

1 2
7 Dl?y + D“Zny

1 3 Dl6

! ; 2 Iny
70y DY Tt D yiny 28 y " &8

) 4 2 2 2 ] 2
T6 DisY * 0,y - 8By +B,(Iny)” + 70 ¥ Iny

+ Dl6Zny

D

1 5 1 1

3 2 29 2
- E'DZIy D,y §-D23y Dyt §'Dzsy(lny)

y

1 3 n
+ g Dyg¥ Iny + Dy ylny - 8B,lny + 28,8 L+ D .

The discharge coefficient constant C , is found from,

(B-55)

(B-56)

(B-57)

(B-58)

(B-59)

(B-60)

(B-61)

(B-62)

(B-63)

(B-64)

(B-65)

(B-66)
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1 3 1 .2 ] 1 2.2 ,
TS 8183 +§86 TS 818286 *—6—8182 (B-€7)
=]—BBB-1-’«B (B-68)
g M1*1°2 3 %1% \
] 1] 2 ]
=788, t 3 -7 88,8 (B-69)
2 1 2,2
= 4 B,B,B, - 1z BB (8-70)
1 _6f 8| [6 6] 1 . 3l s s 4 4!
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+ LB (y / (B-71)
2 3“L[‘yo ‘yiJ
1 L2 ] ] 2 1
=6 B0y * 75 BoDis T 744 B0a - 788 B0y (B-72)
1 L2 1 1 2.2 1 ] 2
=7 80, +_2—BODZO * 35 B8, * 57 B0, - 76 8106
-lep - Lo (8-73)
8 “2720 32 014
_ 2 2
- £6,88, - 2888 (B-74)
i 3 1 1,2 1 1
= B0y - 7 B, + ? B0\ * ? BB, - 7 8,00 - 7 B,D1e (B-75)
_ 1 p2p2 1
- 7 BB, + 58,0, (B-76)
-BD_ +BB -3¢ (B-77)
2°16 0 2 2 2
21 L2 1 -
- 724 BDs* 38 B,D\s (B-78)

Ceentaa




~——_-——-——-——-—-——

C
D23

D8

D24

D25

D26

D27
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D29

141
= %Bfle %82020 +%BODI4 - %B?B - —}382‘)14 (8-79)
= % Bi - B0, - BoBi + B0, + BD (8-80)
1—]§ B?Dls[yz_y J ¥ Cms(yo y;} ) % 518? {yz’y?} ¥ Culbiy: Y?J
* CD”(y:—y ] Cma{Yj'Yiz} * Bz [Yi(l”yo} -yxz | Y ‘)‘13%
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- % 81Ble {Y:Z”Yo'yfznyi} * Coas (Yzznyo'yf Z”yiJ (B-81)
- 38,8 - 1z 8B, (8-82) °
- 38287 + 37 808; - 2 8808, (8-83)
SRR T R TR T o0
- 38,8 - 28 (B-85)
- 3 8,8%8, - 3 BB (8-86)
- % B - g BB + % BB, (B-87)

2y=-3} 11 6f 8 8 6 6 4 4 2
= ( 3 ] 64 B, (-yo'yi] + cou (‘yo-yi] + CD25 {yo-yi} * Chze (y:_yi]

1 3] 2 3 2 3 2 4
*7 8 [‘Yo[zn‘yo] Y [Znyi] J + % B, Bz [y:{lnyo]z - Y (Z”yi }2}
2 2 2 2 1 .4 6 6
* Cpgy [yo [Z"-yo] Y (Z”yi] ] *g 88, (yoznyo'yi Znyi}

4

4 2 2
+ CD.m [.Vo Iny -y, iny, ] + CD29 [yo iny -y, iny, U (B-88)
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c,,=C.+C_+C_ . (B-89)

Third Order Solution

The u, and Vs velocity components from the third order solution are

3
given by,
S 2
U (2,y) = [E ()4F,] + [26, (y)+F ]2 + BE(y)+F,12° + Fiz°  (8-90)
v (z,y) = EX(y) + El(y)z + Ej(y)2" + E2(y)° , (8-91)
where the constants are determined in the following order,
- 1 4 2 2, 2 1 2
F4 - hl [Té D\S‘yo * DZO‘yo - 81 Blyo + BZ[bn‘yo} * 4 Dl4‘yoznyo
+ D, lny, + Do:) (B-92)
_ 2 1,2 2 1 4 2
Fg = hyn + hz”[f By, *Blny, + Bo:] th, [TE D,s¥, * D50,
2 2 1 2
T B1 Bl‘yo ¥ BZ [znyo] * IDl4y°ZYZy° * DlGZH‘yo * Doj}
2 hadl 3,3 2
*h {Dlzyo tab Iny + Dl] - ( Z I h, [E By,
B,
+ B + BB Iny +BB -— (B-93)
yO
F.o=hnB +hD, +h[D_y* + 20 +D ) [z
6 M"Y 12 2[_12yo 1 Y, 1] LZ— 1 1'y2J
[+
hadl 3 .3 2 Bs
-\ "7 By, * B +BBiny +BB-—~ (B-94)
Yo
F, = hoD - (ﬁl} o [52. 2 (B-95)
7 2 2 4 2( 1 2
yO
& A . - e e e e e

[
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F = ﬁ_ D D B + B 2 lD 2.
' 8 9, 16 137 207, 10, Y g YaY, Y,
RS (B-36)
S
: 2 22 " 2
F9 - 92'} * 92 IL? Bl‘yi * B -"'yi * B gl ;D12'yl * ZDll ‘yl * Jl_‘
' + Al D v+ 0D o v g2 2, ] 2.
9, ':‘6_ 1355 20 T 19, 2{ Y 14, Y
| e s |
- 1 |l N
+Dle“'y +D0J k ! 91E4By Be +8182 Y
[
| + BB il 97
BB, - _2‘ (8-97)
‘yi‘
. T 8]
_ 2 L [+11 P2
Fio = 9,78, + 9D, + gz[olzyi + 20, byt DIJ {7 9, f’l - ;?
by
Y g 13832 48 4+ BB Iny + BB 83] 9
VT %7 5 e * BB Iny, BB, - =% (B-98)
Y |
| e oegn, - [ gl -
oo %Y g 2 2 (B-99)
1 yi
|
F . =2(y-1)B.D. . + 2(y-1)B’D, + (y-1)B* + 4p® + 48°D (B-100)
12 Y 1°12 Y 172 Y 1 2 172
! [F y -F y.Jy.y
_ 1170 77i iYo
Fls - 2 2 (B-101)
‘ l Y.y,
| F7_y - ]7 Flzyz'Fls
F, = — . (B-102)
3 2
llBlyo
l |
! Fla =3 F, + 4BF, (8-103)
]
S S e
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= 38%F. + (y+2)B°D. + 9B F. + 6D.D. . + 3(y+2)B°D . + (24)B
1'3 Y 1Y2 114 2°12 Y 1“12 LA
+ {y-1)8,D (B-104)
= :-Ci 2 - R -
5 ]818l lez (B-105)
- (9y=11n g2 -
§e 82 + 68,0, (8-106)
%l -
2 ]8182 (B-107)

2
= 6B,F, + 2(y+2)BlB?_D2 + 188 F ., +120,D , + 2(2y+1)BD

1711

+2(y-1)B,0, + (y-1)B,D,, + 3(y-1)BB

A (B-108)

_ 13y+5) 3 2
= {~1;—}BIBZ + 68D+ 6B,D , + 2(y-1)BD

? otia t Z(Y'])Blom

2 171714 17272

+ l—]—BD + 2(y-1)B.D, + (Y-])BZB + (y-1)B, B, D
62 16

+ (2y+1)BlD, + 2(y-1)B,B + 6B F, + 6D D, + 68,B,D,  (B-109)

iny F
1 3 o 18 1 1
- Z F15‘yo * Flb + Fl7 yo T T2 + Fl9li7 yozn‘yo - Z‘yo]
LA (B-110)
2 ZOyo
Iny, F
21 3 i 18 1 1
=7 FisY 16 ¥ iy y, -;2—+F19[—2—y1 tny, -Zy:}
i
+ 1 (B-111)
2 "20Y%
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ESCEIINETEE)
38,y (8-113)
7 Fa0 m 4 Fig * B F (B-114)
2 20 4 "19 12 -
! 1
7Fe 8%, (B-115)
_ 2 ] 1 ’.lﬂ} 2
=3B F,t7BF +20 ) +; 0,0, + & jBIDu + (1#2)8D ,
1 g [2y+1) g6
+ 580D, + W, jBl + (y-1)8,0,, (B-116)

2 3 2
ZBIF2 + (YH)BlDl + 2B,B D, + 6B, F, , + BBlF25 +4D,D, + 48,8 D ,

2 3 3v+7) .4 2
+ 402020 + (ZY)BID2O + (2\()8186 + (—X——»}BIBZ + (y+3)BlD19

4 3 1 2
+8.0, + (2y)BOBl + 2(y+1)BbD12 +B D, + 2 (Y-1)81014 (B-117)

+ %—(y-1)e D, + (y-1)B.B.D

+ (y-1)B. D . + 4(y-1)B D 1726 1°2°12

0713 1732

17172

- 19v+43 3
= 8BlF”J - 43 B D, - [———g—t-—}BlBl - 581012 + (Y-])BIDZS (B-118)

= 8B F . - 2(y+2)B BB, - 480, + (y-1)8,B B + (v-1)8,D,, - 8D

1172 1711 17071
+ 3 (y+1)g B, (8-119)
= (3y-1)B,B,8, + 48,0, + (2y)B B, + 4B,D (8-120)
- [xgl}sles (B-121)

_ 2 2 2.2
= 12B,F . + 4B F, + 8D ] + 68,0, + (5y-3)B;B} + 4(y+1)B B,D

+ (Y-I)BZD14 + (Y-'I)BID25 (B-122)

T - -




33

34

35

36

37

39

14¢€

2 “ 12431 2
6BlF13 * 682F14 * 281F19 * ODllDIZ * DZDX4 * ‘\ é )81014
.y 3 2 4
+ z\-,ﬂ)BlD“ + 2<\,/+3)BlBZDl2 +28'BD, + (éh)Bl B,
+ (‘r-])BZDI3 + (Y'])onze (B-123)

4B,F, + 2(y+1)B,B,D, + 48,8 D, + 128 F , + 8B F, + 80D

\n2 2.2 {y+3]
* 88081011 + 4D, * <2{)81016 * 2(Y+6)8182 * i\LZ——szDH

+ 2(y+1)B. B, D, + 2(y-1)B,D _ + (y-1)B D , + (y-1)B D

172711 2719 014 125 (B-124)

+ 4(y-1)B D, + 4(y-1)B.B°B. + 2(y-1)B.B.8B

* Z(Y'])BxDu 611 0 "1 72 1°25%

1 ,
> (y+1)8,8,8, - 28D, (B-125)

2(y+4)32 (B-126)

3 2 2 2 2
(Y+])B! B, + (y+1 )B! B,B, + 4BlDl6 + 432019 + (Y)BIBZ+ (Y+3)BOBle

1
+4B.D, + 48D, *+ 2(y-1)BD,, + 5 (y-1)BD, + 2(y-1)B,D

+ (y-1)B D

(D, + 2(y-1)B,D, + 2(y-1)8,B B, + (y-1)B B,D  (B-127)

071 6
+ (2y)B%D. + (y-1)8°B® + 4B F. + 20°> + 4D D_ + 4B B D. + 28°D

Y10 Y 01 0 2 1 0 2 0171 0 2
Zrzyo

Y, yz

5 ] 3 1 2
Foe¥o * 7 Fan¥y * 3 F0aY, + Fy * Fyg

o —~

1 2 1 1 1 3 1 3
* FSZ[-Z— ‘yo [Znyo] - _z-yozn’yo + I‘yo] + FSS[I ‘yoz'nyo - Tg'yo]

2
!Zny l
1 1 1 o
* Fu[? Yo Iy, - Eyo] * Fss[lnyo B ]] * 7 Fse y,
1
+ 3 Fy, (B-128)

Y o e i
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i SSL/ R4 36 yi
s 1E oy (B-129)
2 377
{Fo¥o~Fsy, -F, ¥, *F Y %y
9vo0 5 4070 39 ivYo
Feg = > (B-130)
yo~ 1

y -F_y -F

Fl = 970 3920 38 (8-13])
ZBlyo
F o=1fp _ L (B-132)
41 4 " 27 16 33
Fo=tp 1 1o ok (B-133)
42 4 "32 4 34 2 37 11
Fo=Llg _1l¢ (B-134)
43 2 34 2 32
Fas = Fao - Fyg (B-135)
F = l—F - L F (B-136)
45 4 a4 64 "33
_ ] ] 1

Fae =7 F4p ¥ 8 Fs2 = 7 Fys (8-137)
F” = F“ - F35 (B-138)
S - (B-139)
48 2 43 4 32
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(51+3 7 3y-11,2
M { Bx * [ 81021

] ]
ByFis * 281F4s + 2012020 g0, 8 %0°1%13

(B-142)

2 2 3 2
BlFl * BOBIDI + (Y)BIDO + 4BOF25 + 2BlFa‘l6 * 2DODIZ * BODlZ

+3) 4 -1 2 2
+ 20, D,, + 2B B/ D, + (IZ—}Blss * (X?—}Blﬁe * (Y+])81033

2 2 3
+ 28,0, + B/B,B, + (y+1)B BB, + (%—IBOBXBZ + > BD

=11p2
+ 28D g +5BD + (L—}B D,, + 4(y-1)BD ve

-1
3 2 1°1°34 0-32 * LXZ_]BOD

N —

* 20180, + (118,80, + (]88

172720 (B-143)

2

= 2BF,, + 4B,F  + 2B F, - 28 BD + (y-5)8 B B - (3y-1)8 B B

17171 17071 1176

gy .2 3l g i
¥ [ 2 ]Bles * 3 B0y - [ BB, B, - 28,05 * (v-1)B,D,4

- 8,0, (B~144)

= 4BOFIB + ZBIFSI - (Y+])BIBIBS * 282035 - (Y+])BIBOBZ - 281016

+ (v-1)B,D;, - 8,0, + (v-1)8,B; (8-145)
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-] 2

[Ié—islss + 28D + (2y)B,B,B, + 28D (B-146)
1 2 3
282F17 + 3 BIF36 + 6820“ + (3Y~])Bl82 + (y-’l)BzD25 (B-147)
2 1 2 2
BIF17 FB Rt 2 B Fs, t 3,0, * D11D14 + 28,80,
g2, [y2 () g2
cangs ¢+ (5E88,0,, + (e, ¢ (1B, (B-148)
2 2
48,F,, *+ 2B,F,, * B/F;, + 4D, D, + 38,0 + (2v)8,8,8,
. 3(y+3) 3
+ 4B B0+ (ZY)8182U16 * (Y)Bzazs * =y BB, Z(Y'])szu
2
+ (Y-l)BOD25 + 3(\{«1)8286 (B-149)
2

- 8,8 (B-150)
1 .2 ] 1 ] 1 2
78Fs*7 B, Fis ¥ g8 Fs t 37 D204 + 30,,0:5 B,B,D,,

L Y1} o3 +4 2y+1 g5

7 B0y, (4 ]81014 + [18_18182013 * { ? 18182

2

+ (2181026 + (v-1)8,D, (B-151)

2 ]
2B/ F,, + 4B,F,, +B,F, + 2B F,, +2D .0, +4D D, * 70,0,
+1laB0D +288%D +28BBD_ +BBD + (y)BD

2 “0°1"14 01”11 0°2"12 1%2% Y1806

2 2 1
+ (ZY)Bleozo * (ZY)BI BB * (YH)BlDu + (%182026

+4) .3 + -
+ (1—9]3132 + (2y)B B}B, + (XEJ&B D,, + 2B,B,D,, * (Iﬁliezo

2 01 2 6 14 1°27°19 1728
* 4(Y'])Bzosz * (Y'])Booze * (]il]BszDu (B-152)
Sy+11 2 5
4B,F . *+ 2B,F, - 48,B D, - [ 2 ]BleBz - TBLDM
+ (y-1)8,0,, (B-153)
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Fos = 2B,F + 2B B,D + (2y)B,B,D, + 4B F, + 2B F,_ +4DD
+ 28D + 20D + 2B,B D . + (y+5)BB,B, + (v+1)B,D,,
+ 68,8, + (v+1)B,B,B. + (y+1)B,B,D  + BD , + 2(y-1)B,D,,
+ (v-1)8,0,, + 2(y-1)B,0,, + 2(y-1)B,D , + (y-1)B;B B,
+ 2(y-1)B,8,8, (B-154)
Foa = 4B,F - (v#7)8,B2 + (y-1)B,D,, + (y-1)3,B B, - 8,0 _ (B-155)
F, = 2(v+4)B.B, (B-156)
Foo = (Y'”BIBZ,Be ¥ (l;_é]gfgl * ZBfDn v 28Dy ¥ (Y)BfBzBs
| + 2B B/B, + 28 B,B, + 2B.D + 2B.D . + 2(y-1)B D,
+ (y-1)B D, + 2(y-1)B.D, + (y-1)B;B, + (y-1)B 8,0,
L + (151}823‘82 + 28)F, + 20D, + BZD + 2B B D, (B-157)
% Fes = ?]? Fso - ;_5 Feo (8-158)
F69 ® 7][ Fsz + :]3—2‘ Fsv - -}-6_ F6l (8-155)
F,, = %‘Fss - %‘F;z (B-160)
For = % Fse - % Fe - ]E Fos ¥ ]f Fee (B-161)
F,, = % Fop - % Fee (B-162)
Fos = T]l' Far - % Fsa (B-163)
l
'
A = RE———
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.3 ] ]
74 4 Foo - 7 Fsa t7 Fos (B-164)
Fvs N F64 - 2F59 (B-165)
Fro = Foa * 2Fsg = Foy (8-166)
] 7 s 4 3 2
Foo "8 Fag¥e ¥ Fesdo * 5 For¥, * Foo¥y * Froy, * FouY,
1 3 l 3., 2 RN 2 " ]2
M 2 Fsayo (ZnyoJ * 4 F57y°(u.y°} * F72y° (""yo} * F59 [""yo)
2
iny
1 ° 1 5, 3. 1 2,
* 7 Fes y, MR ALC AR IS AL R S PP AN
7ny°
+Fy tny +F Iny +F v, + (B-167)
21 7 5 1 4 3 2
Fos " Fas tFaY *35 Fooyy + Feo¥i * Fooy * 0y,
1 3 1 3 2 2 2
o Fe [Z”yi] 7 FsY (Z”yi} +FL (Z"yi] + F59{Z”yi)
v LF Zny‘2+lF Stny + F, yllny, + +F y'1
2 7es 6 60Yi Vi 73Y; Y T T Te O,
lnyi
+F Y iny +F lny + Fyo v, + Foe (B-168)
(Fo¥o=Fadi =Fra¥, ¥y, Jy, ¥
- 8Y0 47i 78¥0 7771 ivo
For = 2 2 (B-169)
o Ji
Fy-F . y-F
Fo I ) 7; o 67 (8-170)
B
l‘yo
Foo = For +B,F - (B-171)
_ . e
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The functions of y are given by,

F

' - A3 -
By = Fy+— (B-172)
E(y) =+ F y* +F (8-173)
s\ T T Y 13 9% )
En()le 3+F +f.2,._1.. —Fl.__8.+lF l + F —Z-El'fF (8174)
2V T Ry 24 T Ty E 2 ¥ T, Ty 16 N0
E()"]F S F Ve F +Fxs+1F(7 2+1F 2,
2V 776 TisY 25 oVt g R (i) g By iny

+ lelny {B-175)

F F
, 1 5 3 1 2 38 31 L 2
E(y) =g Py +Fy *3fy tFLy y _;5 + 7 Fypy(iny)
] flnx!"' 1 3
s F36 y *3 Fssy Iny + F,ylny + Fsslny
In
* Fs ’}l * Fas (B-176)
F
] 6 a1 3 2 31 ] 3
E ) = g5 Fpe¥ * Foo¥ +gFy *Fy +F.y +—y—+B-F36(lny)
] 2 2 1 2,1 4 2

+ g Fyp¥ (Iny)” + 5 Fso(zny) 18 Fogy iny + F, ¥ Iny

+ Fssylny + F:ss iny (B-177)
B () =hF v +FE P+ E VR S e E S F +ff-7-
o\ T g FaeY 68y 5 's1Y 697 70Y 79Y y

2
* Jf FS\:,-V(Zn,Y)3 + }T Fs-;-y:”(lﬂ.y)2 + szy(Z”Y)z + Fs9(lny)

2
1 n 1 5 3 1 2
5 F65 L.y.Y.l._+ 3 Foo¥ Iny * Fny iny + 3 F62_y iny

I3
+F, ylny + F lny + F, -;—:l +F, - (B-178)
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The third order discharge coefficient constant CD3 is determined from,

1 .3 1

Cose = 7 8,05, * 5 B0y,
1 3 1

C037 - T?'BlDzs - 5'61021
_ 1,3 1

Coss ~ g BlD33 * BeDsz + 5'83021
_ 1,3 1

Coso = 7 B0g5 * 3 B0, - 8,0y,

C =18 +BD. +BD, -1+80D

D40 4 "1729 6 33 3732 3 71723

C  =BD ++BD._ -80D

D41l 6 35 3 "z723 1733

cD42 - B6Dz9 * Bsts - Bles

Cn43 = Bsoss - B1Dz9
1 .3 1

Coaa = 8 BDys * 7 B,B,D,

C = l B D + B B.D

D45 2 "6 °25 1°2 34
_ 2 1

Cpae = =~ B,B,B, - 5"81025

C . =28 88, +4B.0D

D47 1°2°3 2 73725
_ 1 3 1

cp4a - TE'Bloze + 3'8182021

C =Xg, +1sp. +880D

D49 4 1734 4 "6 26 172732
2] 1 3 1

cDso - §'8182023 - 3'818182 - 1'81026
2 1

C = 3

D51 7'818283 * 86034 * 8182033 * 780,

A — —————

(B-179)

(B-180)

(B-181)

(B-182)

(B-183)

(B-184)

(B-185)

(B-186)

(B-187)

(B-188)

(B-189)

(B-190)

(B-191)

(B-192)

(B-193)

(B-194)
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Cosz c - BleBe * BszDss - 51D34 (B-195)
_ 2
coss - ZB28386 * B182029 * 83034 * B8, (8-196)
¢ =1c¢ 1. (B-197)
D54 8 “p3s 64 “pas
C,.o=+c.  +d-¢c .1 (B-198)
D55 6 “p3s 108 “pas 36 “pas
c . =t¢ )¢ (B-199)
D56 5 “p3g 25 “pso
Coor “2C. ~-BBD +L ¢ 1 (B-200)
Ds7 4 “pao 256 "172%;5 32 “pas 16 “psi
21 2 ]
CDSB =3 0n t 27 CD46 -9 (s, (B-201)
C..=+c. +1c 1 (B-202)
D59 2 “D4a2 4 “pav 4 “psz
CD60 N CD43 * 381 BzBs (B-203)
c..=l¢c -3 gpp (B-204)
D61 4 “pas 32 "172%25
L (B-205)
D62 6 “Dpas 18 “paa
_ 3 ] 1
CDss =85 8 Bzozs "8 CD45 My CDSI (B-206)
_ 1 2
CDG4 =30, - 9 Cose (B-207)
c . =3¢ -1 (B-208)
Dés 7 “ps3 2 “paz

.| 10 10 8 8 ] 7 7 6 6

Coso = 740 B,0;, (yo " Y } * Coss (yo"yi} 7 CD37(yo-yi } * Coss (‘yo-‘yi}
5 4 4 3 3 2 2
* Cose (‘yo-yi} * Cosy (yo'yi] * CDss(yo'yiJ * Coso [‘yo-‘yi}

+ Coeo (yo'yi] + ';— B, Bzozs [y: [Znst - y:(lnyl ]3]
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V200 12
CD47Lyo{‘”yo} Y

Wi ~—
N
o
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]
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[ )
L
+
Ao~

+ 8282[(371%}2 - {Znyi ]2] + % C

J

-

1 5 S
* E'Cnso[yolnyg‘yilnyij De4!}%

4, 'S
+ Cnés[yomyo-y’, myi:] +

2,
/
L

2 .
+ Cobs[yo nyb-innyi] - 3818283[&°Zny0-yi2nyi} + 83029;>

Coes = %-8386 ¥ %E'BOB?
%M=%§%+%ﬁi+%%§%
Coes = - 818f86 - %'BxBoB?

Co = 58,8, + J 182 0 Lo, s g
Cpro ™ °818383 - 28, 8,B,

Cpyy * 2B,8,8, + BfBo * %'BfBj
Cora = ZBIB:Bb * 308382

oy = g'B?ste * %'BOB;Bz
%HZ%Bﬁﬂs+%i+2%%%%
Cors = - 28,8,8, - 281808182

Cpre = 2B,B.B, + BfBz * 280818283
Coy = %'coso B Tﬁ%? 8?82

8 8, 6, 6.
D48 [yo Zn'yo -yi b7‘%_} * CD62 rLyo ")"yo -yi Y,

3. 3 |
DYy Y, |

~ -
e
{

o

~

d

Ay, 7y, ) (B-209)

(B-210)

(B-211)

(B-212)

(B-213)

(B-214)

(B-215)

(B-216)

(B-217)

(B-218)

(B-219)

(B-220)

(B-221)
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D86

D87

D88
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L o5 818 - s (B-222)
L 5 5,88, (B-223)
T Coes - Tog BB + 3 Corz = 15 Cone (B-224)
o - 50 - By ez
f’]fcmx ¥ Jf B BBy - "I]T Cor6 (8-226)
26,8,8, - 28 B B, (B-227)
% Corz - % BTB (B-228)
% Cors = }_ B?B; (B-229)
%2 Bfai i % Cora ¥ % Cora (8-230)
% 8B, Bz * _;' Cors (B-231)
% Core = B BiB (8-232)
(]—é’]‘]l};—o B y1°-y.‘°] +C (ya ya] - 75 6 B (f—y.?l

1170 Y D77 {Y0 i 8 17170 Vi
* Cors y:-y Cors [y: ‘le Coeo (y: y } Coss {y y)]
Cona [57) # Cons ) * 4 8851 o ) - o2 )]
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2 1

21
Cpeo = 78 Fs * 36 BoFae
C. =18 +BF
D90 2 "1 46 0 45
1,2 ]
Coor = 2 BFer ¥ [) ByFas
C., = »BF +BF
pe2 2 “1'0 0 46
1 2
Cpos = 5 B Fy, * BFy,
C.. =+=BF_ +LBF

D94 12 “1'36 & 232

21 ]
Chos = 7 ByFsp * 6 ByFs6
I 1
Cooe = 8 Bifsy * 76 Bafss
21 L2 1
CD97 ) B Fso * ByFgs ¥ a BoFsz
€., =BF. +%BF
D98 2 38 2 0’30
_1 2 1
Cooo = 37 B Fyg * 36 B, Fae
1 2 1
cmoo =7 B Fg t Bt 16 BoFss
1 2 1
Coror = 2 B,Fss * 9 Bzea
C o, =% B°F, +BF, +BF
D102 2 1 38 2 46 0 48

6. 6, 1 _ 3 . 3
Coas[yo""yo'ys ""yiJ 105 8,8,

4 2 |
281 BZ BS [yo 17?)’0 -yi ”:‘yi] + B0 BS 4 (yo /yi ) ‘

—

: S,Q 5.
RANE At A A

i

i
‘

J

a, 4, T3 5.0 T2, 2. "
Cnae{y Y Yy “”yi_f * Cstl_yo Y, TY U"yij * CDSB(L_yo',"yo-yi Y

(B-233)
(B-234)
(B-235)
(B-236)
(B-237)
(B-238)
(B-239)
(B-240)
(B-241)
(B-242)
(B-243)
(B-244)
(B-245)
(B-246)

(B-247)

-

b
. ]
Yl




D103

D104

D105

D106

D107

D108

D109

D110

D111l

D112

D113

D114

D115

D116

D117
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Having determined the (ul,vl), (uz,vz), and (u3,v3) velocity components

as well as the discharge coefficient constants CDl, C and C_.» the important

D2’
flowfield variables may then be evaluated. The series expansions for these

quantities are given in Chapter III and are included here for completeness,

. 2 3
T+U=1+ue+uye +ue + ... (B-324)

U(Z’.Y)

H

1/2
viz,y) = v = [1;—] 5} [vle + vze2 + v353 + } (B-325)

M*(z,y) = {u2+ vz]’/2 =1 +ue+ uzsz + [u3+ adl vz}e3 + ...(B-326)

1/2
6(z,y) = tan"' (v/u) = [l%l {} [Qle + (vz-ulvl]e2
4 [VS-ulvz-uzvl’rufvl]e3 + :I (8-327)
2w ] 3
- y+] _ + 3 o 112].2
M(z,y) = —]——__—'X;T_—M:; =1+ (]2—] [ule + [uz'* ) (v 1)ulj]e
v (B-328)

2
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[ v/ (y=1) 5 v/ (y-1) r
P I P il R - |2 - ‘ 2
P, (zoy) = 1 - M Y”} Toyjue *u
+ [u3+ el oxl uﬂf + M (8-329)
-
- +1)e? . 2
€, =1 -5 [Cm t Cp,e + C e # ] . (B-330)

While the preceding list of constants and functions looks quite
formidable, it is to be noted that for a given configuration the constants
need be evaluated just once. Only z and the functions of y must be

determined for each point in the flowfield.
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APPENDIX C. SOLUTION SUMMARY FOR THE CONVENTIONAL
AXISYMMETRIC CONFIGURATION

For the special case of an axisymmetric nozzle without a centerbody,
’ the parameters which are to be specified are: vy, the ratio of specific
heats; R » the wall radius of curvature non-dimensionalized with respect
to the throat radius; N, the number of terms in the series solution to be

i employed; and n the parameter in the expansion variable,
€ = (Rc+n]“ . (c-1)
With these quantities given, the perturbation velocity components and the

discharge coefficient constants for the first three solution orders may be

evaluated from,

1 1
u(zy) =5y - g+ (c-2)
v (z,y) = 1 1 z (c-3)
(zay) =gy - gy ty
+ - 10y+57-72 4n-5
uz(z,y) - 2%49 y4 _ 4xfgi]2n yz + Qi?ga n o, [yz + rg }Z
- glslg}zz (C_4)

_y*3 5 20y+63-36n 3 , 28y+93-108n
va(zy) = 55y % Y tT s Y

+ (2%;9 ys _ 4y+15-12n y}z sy (c-5)

(2.y) = 5661 +1737y+3069 6 _ 388y°+(1161-384n)y+(1881-1728n) 4
UsAZ,y 10, 368 y 2304 y

, 308y°+(831-576n)y+(1242-2160n+864n") 2
1728 y

; _ 2708y° +(7839-5760n)y+(14,211-32,832n+20,736n° )
| 82,944

——
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L 152¢°45194327 & 52y%475y+(279-288n) 2
L Y 192 Y

L
2 2_|
R 9@1,+1801+gﬁ13;1080n+432n )‘z (C-6)

-

C7y=3 2, (13-16n)y-(27-24n)] 2 . lay2-s7y+27] s
A 8 P T

)

_ 6836y°+23,031y+30,627 7
vs(2.y) = 82,944 y

_3380y°+(11,391-3840n)y+(15,291-11,520n) s
13,824 Y

+

3824y%+(11,271-7200n)y+(15,228-22,680n+6480n° ) 3
13,824 y

_ 7100y°+(22,311-20,160n)y+(30,249-66,960n+38,880n" )
82,944 y

+

{%56y2+1737y+3069 S 388y°+(1161-384n)y+(1881-1728n) J

1728 576
+ 3931?+(83]-576n)%ié;242-2160n+864n2) %]Z (C-7)
2 2
52y°+51y+327 3 52y +75y+(279-288n) |2 . [ 7y-3 1.3
¥ { 792 y 192 . 17 Y|?
. =i (c-8)
D1 96
_ 8y+21-48n i
Co2 2308 (C-9)
c - 758y +(1971-2880n )y+(2007-7560n+8640n" ) (C-10)
D3 276,480 )

The quantities u, v, M*, 6, M, P/Py > and CD can then be determined from

Eqs. (II1-73)-(I11-78) and (III-80), respectively.
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The resulting solution is applicable to axisymmetric nozzles with ejther
circular, parabolic, elliptic, or hyperbolic arc wall contours. [t should
also be noted that the expansion parameter employed here is . : the one
obtained by simplifying the definition of ¢ used in the general solution,

Eq. (11I-22), for the case of a straight inner wall. The latter procedure
results in the definition given in Eq. (I111-82) which, because of the

presence of the coefficient 2, is somewhat less meaningful for the present
case than the one used in this appendix, Eq. (C-1). For general use, and
particularly for nozzles with a small wall radius of curvature, the value

n =1 is recommended for the solution given above.
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TABLES OF DATA, FIGS IV.11-1V.15

COMPARISON OF FULL- AND HALF-SECTION WALL PRESSURE
MEASUREMENTS FOR AXISYMMETRIC NOZZLE, FIG. IV.11

FULL-SECTION MODEL
P, = 350.3 kPa = 50.80 psia T, = 288.9 K = 520.0°R v = 1.4 (air)
P, ... =69.3kPa=10.06 psia Re, =2.68x 10° d = 25.4mm=1.00 in.
Wall Pressure Ratios:
Tap No.l 1 2 3 | 4 _{: 5 | 6 | 7 8
I T T - T T
Z -0.6 40.45 }0.3  +0.15 0.0  0.15 .0.3 40.45
| | | 1
R1.2 1.107 11.046 {1.011 [1.000 [1.011 :1.086 1.107
—— + 4 .
p/p, 0.8756 [0.7695 0.6565 [0.5345 }0.4104 '0.2884 1 0.1848 0.1217
HALF-SECTION MODEL
p, = 402.8 kPa = 58.42 psia T, = 288.9 K = 520.0°R y = 1.4 (air)
P,,..... = 80.0 kPa = 11.60 psia Re,, = 3.09 x 10° d=25.4mm = 1.00 in.
Wall Pressure Ratios:
Tap No.| 1 2 3 4 5 6 7 8 |
Z 0.6 }0.45 }0.3 0.15 |0.0 0.15 0.3 0.45
R |1.2 1.107 |1.046 1.011 [1.000 [1.011 [1.046 11107
p/p, |0.8735 |0.7666 |0.6572 :0.5360 |0.4087 [0.2839 |0.1811 {0.1186
+
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